scholarly journals Cenozoic structural evolution of the southwestern Bükk Mts. and the southern part of the Darnó Deformation Belt (NE Hungary)

2016 ◽  
Vol 67 (1) ◽  
pp. 83-104 ◽  
Author(s):  
Attila Petrik ◽  
Barbara Beke ◽  
László Fodor ◽  
Réka Lukács

Abstract Extensive structural field observations and seismic interpretation allowed us to delineate 7 deformation phases in the study area for the Cenozoic period. Phase D1 indicates NW–SE compression and perpendicular extension in the Late Oligocene–early Eggenburgian and it was responsible for the development of a wedge-shaped Paleogene sequence in front of north-westward propagating blind reverse faults. D2 is represented by E–W compression and perpendicular extension in the middle Eggenburgian–early Ottnangian. The D1 and D2 phases resulted in the erosion of Paleogene suites on elevated highs. Phase D2 was followed by a counterclockwise rotation, described in earlier publications. When considering the age of sediments deformed by the syn-sedimentary D3 deformation and preliminary geochronological ages of deformed volcanites the time of the first CCW rotation can be shifted slightly younger (~17–16.5 Ma) than previously thought (18.5–17.5 Ma). Another consequence of our new timing is that the extrusional tectonics of the ALCAPA unit, the D2 local phase, could also terminate somewhat later by 1 Myr. D4 shows NE–SW extension in the late Karpatian–Early Badenian creating NW–SE trending normal faults which connected the major NNE–SSW trending sinistral faults. The D5 and D6 phases are late syn-rift deformations indicating E–W extension and NW–SE extension, respectively. D5 indicates syn-sedimentary deformation in the Middle Badenian–early Sarmatian and caused the synsedimentary thickening of mid-Miocene suites along NNE–SSW trending transtensional faults. D5 postdates the second CCW rotation which can be bracketed between ~16–15 Ma. This timing is somewhat older than previously considered and is based on new geochronological dates of pyroclastite rocks which were not deformed by this phase. D6 was responsible for further deepening of half-grabens during the Sarmatian. D7 is post-tilt NNW–SSE extension and induced the deposition of the 700 m thick Pannonian wedge between 11.6–8.92 Ma in the southern part of the study area.

2001 ◽  
Vol 34 (1) ◽  
pp. 235 ◽  
Author(s):  
N. FLOTTÉ ◽  
D. SOREL

Structural mapping in northern Peloponnesus reveals the emergence of an E-W striking, more than 70km long, low angle detachment fault dipping to the north beneath the Gulf of Corinth. This paper describes four north-south structural cross-sections in northern Peloponnesus. Structural and sedimentological field observations show that in the studied area the normal faults of northern Peloponnesus branch at depth on this major low angle north-dipping brittle detachment. The southern part of the detachment and the related normal faults are now inactive. To the north, the active Helike and Aigion normal faults are connected at depth with the seismically active northern part of the detachment beneath the Gulf of Corinth.


2003 ◽  
Vol 140 (6) ◽  
pp. 661-668 ◽  
Author(s):  
SPILIOS SOTIROPOULOS ◽  
EVANGELOS KAMBERIS ◽  
MARIA V. TRIANTAPHYLLOU ◽  
THEODOR DOUTSOS

The model of a foreland propagating sequence already presented for the External Hellenides is significantly modified in this paper. New data are used, including structural maps, cross-sections, stratigraphic determinations and seismic profiles. In general, thrusts formed a foreland propagating sequence but they acted simultaneously for a long period of time. Thus, during the Middle Eocene the Pindos thrust resulted in the formation of the Ionian–Gavrovo foreland and acted in tandem with the newly formed Gavrovo thrust within the basin until the Late Oligocene. The Gavrovo thrust consists of segments, showing that out-of-sequence thrusting was important. Thrust nucleation and propagation history is strongly influenced by normal faults formed in the forebulge region of the Ionian–Gavrovo foreland basin. Shortening rates within the Gavrovo–Ionian foreland are low, about 1 mm/year. Although thrust load played an important role in the formation of this basin, the additional load of 3500 m thick clastics in the basin enhanced subsidence and underthrusting.


2016 ◽  
Vol 53 (11) ◽  
pp. 1279-1311 ◽  
Author(s):  
A.M. Celâl Şengör

The Albula Pass region lies between the Lower Austroalpine Err Nappe and the Middle Austroalpine Silvretta Nappe. They will be treated here as the frame of the non- to gently metamorphic sedimentary units between the two during the Alpide times. Sedimentation started on a metamorphic Hercynian basement during the latest Carboniferous(?) and continued into the Permian. Then a sequence from the Alpine Buntsandstein to the medial Jurassic to early Cretaceous Aptychenkalk (=Maiolica) and radiolarites were deposited in an environment of rifting and subsidence. The succeeding Palombini clastics were laid down after the Aptychenkalk and mark the onset of shortening in the Alpine realm. The initial structures that formed were at least two north-dipping normal faults which formed before the deposition of the Jurassic sedimentary rocks. When shortening set in, the first structure that came into being was the south-vergent Elalbula Nappe, bending the normal faults into close antiforms. It became further dismembered into two pieces creating parts of the future Ela and Albula nappes in the Albula region. This motion was later reversed, when the entire ensemble became bulldozed by the immense body of the Silvretta Nappe along numerous, closely spaced thrust faults, some of which only very locally followed horizontal bits of the old normal faults, but in principle they determined their own course. No evidence for westerly motion could be identified, although microstructures in the structural fabric were not studied. The reason for this may be the pre-orogenic fabric in the bounding tectonic units.


2018 ◽  
Vol 6 (2) ◽  
pp. SD29-SD40 ◽  
Author(s):  
Aina J. Bugge ◽  
Stuart R. Clark ◽  
Jan E. Lie ◽  
Jan I. Faleide

Recently, there has been a growing interest in automatic and semiautomatic seismic interpretation, and we have developed methods for extraction of 3D unconformities and faults from seismic data as alternatives to conventional and time-consuming manual interpretation. Our methods can be used separately or together, and they are time efficient and based on easily available 2D and 3D image-processing algorithms, such as morphological operations and image region property operations. The method for extraction of unconformities defines seismic sequences, based on their stratigraphic stacking patterns and seismic amplitudes, and extracts the boundaries between these sequences. The fault-extraction method extracts connected components from a coherence-based fault-likelihood cube where interfering objects are addressed prior to the extraction. We have used industry-based data acquired in a complex geological area and implemented our methods with a case study on the Polhem Subplatform, located in the southwestern Barents Sea north of Norway. For this case study, our methods result in the extraction of two unconformities and twenty-five faults. The unconformities are assumed to be the Base Pleistocene, which separates preglacial and postglacial Cenozoic sediments, and the Base Cretaceous, which separates the severely faulted Mesozoic strata from prograding Paleocene deposits. The faults are assumed to be mainly Jurassic normal faults, and they follow the trends of the eastern and southwestern boundaries of the Polhem Subplatform; the north–south-trending Jason Fault complex; and the northwest–southeast-trending Ringvassøy-Loppa Fault complex.


2019 ◽  
Author(s):  
Christopher Weismüller ◽  
Janos L. Urai ◽  
Michael Kettermann ◽  
Christoph von Hagke ◽  
Klaus Reicherter

Abstract. Normal faults in basalts develop massive dilatancy up to several tens of meters close to the Earth's surface and show corresponding interactions with groundwater and lava flow. These massively dilatant faults (MDF) are widespread in extensional settings like Iceland or the East African Rift, but their detailed geometry is not well understood, despite their importance for fluid flow in the subsurface, geohazards or geothermal energy. We present a large set of digital elevation models (DEM) of the surface geometries of MDF with 5–15 cm resolution, acquired along the Icelandic Rift zone using unmanned aerial vehicles (UAV). UAV provide a much higher resolution than aerial/satellite imagery and a much better overview than ground-based fieldwork, thus bridging the gap between outcrop scale and regional observations. Our data present representative outcrops of MDF, formed in basaltic sequences linked to the Mid Ocean Ridge. We acquired photosets of overlapping images along about 20 km of MDF and processed these using photogrammetry to create high resolution DEMs and ortho-rectified images. We use this dataset to map the faults and their damage zones to measure length, opening width and vertical offset of the faults and identify surface tilt in the damage zones. Ground truthing of the data was done by field observations. Mapped vertical offsets show typical trends of normal fault growth by segment coalescence. However, opening widths in map-view show variations at much higher frequency, caused by segmentation, collapsed relays and tilted blocks. These effects cause a commonly higher than expected ratio of vertical offset and opening width for a steep normal fault at depth. Based on field observations and the relationships of opening width and vertical offset, we define three endmember morphologies of MDF: (i) dilatant faults with opening width and vertical offset, (ii) tilted blocks (TB), and (iii) opening mode (mode I) fissures. Field observation of normal faults without visible opening invariably shows that these have an opening filled by recent sediment. TB dominated normal faults tend to have a largest opening width with respect to vertical offsets. Fissures have opening widths up to 15 m with throw below a 2 m threshold. Plotting opening width versus vertical offset of the fractures shows that there is a continuous transition between the endmembers. We conclude that fractures associated with MDF belong to one larger continuum and the three endmembers are thus not necessarily indicative for fracture maturity.


2021 ◽  
Vol 151 (4) ◽  
pp. 411-422
Author(s):  
Krisztina Sebe

The Pécs-Danitzpuszta sand pit in southern Hungary exposes middle and upper Miocene (Badenian to Pannonian/Langhian to Tortonian) sediments along the mountain front fault zone of the Mecsek Mts and preserves an essential record of tectonic events during and after the early late Miocene, which are not exposed elsewhere in the region. In this paper we present structural observations recorded over 20 years of work, date the deformation events with mollusk biostratigraphy and make inferences on the structural evolution of the area. At the beginning of the time interval between 10.2–10.0 Ma, NNW–SSE (to NW–SE) extension created normal faults and negative flower structures. These show that extension-related fault activity lasted here up to the late Miocene. Shortly thereafter, still in the early part of the time interval between 10.2–10.0 Ma, N–S to NNW–SSE compression ensued and dominated the area ever since. Deformations under this stress field included reverse faulting in the Pannonian marls and sands, folding of the whole succession, with bedding-plane slip and shearingelated block rotation in the already deposited middle and upper Miocene marl layers and continuously changing bedding dips and southward thickening layers in the Pannonian sands. Lake level changes of Lake Pannon must have played a role in the formation of an angular unconformity within the sands besides compression. The compressional event can be explained by the Africa (Adria) – Europe convergence, but cannot be correlated regionally; it pre-dates basin inversion-related events reported from the region so far.


2020 ◽  
pp. geochem2020-030
Author(s):  
Dillon Johnstone ◽  
Kathryn Bethune ◽  
Colin Card ◽  
Victoria Tschirhart

The Patterson Lake corridor is situated along the southwest margin of the Athabasca Basin and contains several basement-hosted uranium deposits and prospects. Drill core investigations during this study have determined that granite, granodiorite, mafic and alkali intrusive basement rocks are entrained in a deep-seated northeast-striking subvertical heterogeneous high-strain zone defined by anastomosing ductile to semi-brittle shears and brittle faults. The earliest phases of ductile deformation (D1/2), linked with Taltson (1.94–1.92 Ga) orogenesis, involved interference between early fold sets (F1/2) and development of an associated ductile transposition foliation (S1/2). During subsequent Snowbird (ca. 1.91–1.90 Ga) tectonism, this composite foliation was re-folded (D3) by northeast-trending buckle-style folds (F3), including a regional fold centered on the Clearwater aeromagnetic high. In continuum with D3, a network of dextral-reverse chloritic-graphitic shears, with C-S geometry, formed initially (D4a) and progressed to more discrete, spaced semi-brittle structures (D4b; ca. 1.900–1.819 Ga). Basin development (D5a; <ca. 1.819 Ga) was marked by a set of north-striking normal faults and related east- and northeast-striking transfer faults that accommodated subsidence. Primary uranium mineralization (D5b; ∼1.45 Ga) was facilitated by brittle reactivation of northeast-striking basement shears in response to west-southwest - east-northeast-directed compressional stress (σ1). Uraninite was emplaced along σ1-parallel extension fractures and dilational zones formed at linkages between northeast- and east-northeast-striking dextral strike-slip faults. Uranium remobilization (D5c) occurred after σ1 shifted to west-northwest – east-southeast, giving rise to regional east- and southeast-striking conjugate faults, along which mafic dykes (1.27 Ga and 1.16 Ga) intruded.Thematic collection: This article is part of the Uranium Fluid Pathways collection available at: https://www.lyellcollection.org/cc/uranium-fluid-pathways


Geology ◽  
1997 ◽  
Vol 25 (9) ◽  
pp. 795 ◽  
Author(s):  
Rob L. Gawthorpe ◽  
Ian Sharp ◽  
John R. Underhill ◽  
Sanjeev Gupta

2007 ◽  
Vol 19 (4) ◽  
pp. 529-556 ◽  
Author(s):  
Alexander C. Whittaker ◽  
Patience A. Cowie ◽  
Mikaël Attal ◽  
Gregory E. Tucker ◽  
Gerald P. Roberts

Sign in / Sign up

Export Citation Format

Share Document