Momordica charantia fruit mediated green synthesis of silver nanoparticles

2015 ◽  
Vol 4 (3) ◽  
Author(s):  
Mst Kamrun Nahar ◽  
Zarina Zakaria ◽  
Uda Hashim ◽  
Md Fazlul Bari

AbstractThe synthesis of nanoparticles (NP) is in the spotlight of modern nanotechnology. In recent years, the development of competent green chemistry methods for the synthesis of metal NPs has become the main focus of research. The biological synthesis of NPs using plant extract is currently under exploitation. For the first time, in this paper, we report the green synthesis of silver nanoparticles (AgNPs) by reduction of silver nitrate, using fruit extracts of

2015 ◽  
Vol 1109 ◽  
pp. 35-39 ◽  
Author(s):  
M.K. Nahar ◽  
Zarina Zakaria ◽  
U. Hashim ◽  
Md Fazlul Bari

The synthesis of nanoparticles is in the spotlight in modern nanotechnology. In recent years, the development of competent green chemistry methods for synthesis of metal nanoparticles (NPs) has become a main limelight of researchers. Biological synthesis of nanoparticles using plant extract is currently under exploitation. The first time in this paper we have reported the green synthesis of silver nanoparticles (AgNPs) by reduction of silver nitrate, using fruit extracts of Momordica charantia (bitter melon); commonly found plant in south East Asia. The reaction process for the synthesis of silver nanoparticles is simple, cost-effective, novel, rapid and eco-friendly route using fruit extract of M. charantia plant, which acted as a reducing and stabilizing agent simultaneously at room temperature. Formation of the nanosilver was confirmed by surface Plasmon spectra using UV-Vis spectrophotometer and absorbance peak at 440 nm. Different silver ion concentration and contact times were experimenting in the synthesis of silver nanoparticles. The prepared nanoparticles properties were characterized by UV-Vis.


2020 ◽  
Author(s):  
Halima R ◽  
Archna Narula ◽  
R.R Sivakiran

Abstract Background: The present work describes the synthesis of silver nanoparticles (AgNps) from leaf extracts of Piper betle and Jatropha curcas using a green approach. Green synthesis of nanoparticle is superior over other methods of synthesis as it is ecofriendly and cost effective. The phytochemical components in the leaf extract play a vital role in reducing the AgNO3 and hence synthesizing the silver nanoparticles. During this reduction activity, the several factors which affect the synthesis of nanoparticles were investigated and optimized according to the yield of nanoparticles. The experimental conditions investigated were pH, temperature, pressure, time of reaction, microwave radiation, UV radiation and concentration of plant extract, silver nitrate & sunlight. Satisfactory yields of silver nanoparticles synthesis from plant extract were obtained by using optimum conditions when compared to conventional synthesis of nanoparticles. The optimization parameter was later Result: A mathematical model was formulated to correlate the interactive influence of the parameters and the significant reduction. Plackett-Burman design (PBD) indicated that concentration of plant extract, concentration of silver nitrate and sunlight were the major parameters affecting the synthesis of silver nanoparticle. The mutual interactions of these variables are mapped in the design by 3 Box-Behnken design (BBD). The significant factors and their interactions in the green synthesis were examined by analysis of Variance (ANOVA). The result indicated that the BBD was a good predictive model for the experimental results. Though the plant extracts are different, the characterization of the synthesized nanoparticle after optimization of parameters showed uniform size and shape i.e. spherical shape and size of 41 nm. Conclusion: The silver nanoparticles were synthesized under different optimization parameters were uniformly shaped (spherical) and sized (41 nm) particles. The mathematical models Plackett-Burman and Box-Behnken helped in analyzing the impact of the optimization parameters.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Akshay Rajeev Geetha ◽  
Elizabeth George ◽  
Akshay Srinivasan ◽  
Jameel Shaik

Production of silver nanoparticles from the leaf extracts ofPimenta dioicais reported for the first time in this paper. Three different sets of leaves were utilized for the synthesis of nanoparticles—fresh, hot-air oven dried, and sun-dried. These nanoparticles were characterized using UV-Vis spectroscopy and AFM. The results were diverse in that different sizes were seen for different leaf conditions. Nanoparticles synthesized using sun-dried leaves (produced using a particular ratio (1 : 0.5) of the leaf extract sample and silver nitrate (1 mM), resp.) possessed the smallest sizes. We believe that further optimization of the current green-synthesis method would help in the production of monodispersed silver nanoparticles having great potential in treating several diseases.


Author(s):  
Lavanya Krishnadhas ◽  
Santhi R. ◽  
Annapurani S.

Nanoparticles are gaining interest in biomedical applications due to its importance such as anti-bacterial, anti-fungal and anti-cancer agents. Conventional methods for the synthesis of metal nanoparticles involves toxic reagents which produce harmful by-products and are hazardous to the environment. To overcome these limitations, green synthesis of nanoparticles was established. Eco-friendly methods using plant extracts are gaining popularity due to the abundance of raw materials and the production of non-toxic by-products threatening to the environment. Moreover, the nanoparticles synthesized from the plant extract are cost-effective. In addition, nanoparticles produced by green synthesis methods produces synergetic effect where both the nanoparticles as well as the natural bioactive constituents of the plant influence the biocidal properties. Different methods namely heating in water bath, microwave oven and exposure to bright sunlight were adopted for the synthesis of silver nanoparticles. Plant extract based synthesis of silver nanoparticles was eco-friendly and shows an alternative promise in bio-medical applications and it undertakes the negative effects of synthetic drugs.


2016 ◽  
Vol 8 (1) ◽  
pp. 106-111
Author(s):  
Somnath BHOWMIK ◽  
Badal Kumar DATTA ◽  
Ajay Krishna SAHA ◽  
Pradyut CHAKMA ◽  
Narayan Chandra MANDAL

The biological synthesis of nanoparticles using plant extracts plays an important role in the field of nanotechnology. In this study, rapid, simple approach was applied for synthesis of silver nanoparticles using , Clerodendrum infortunatum, Mucuna interrupta, Phlogancanthus thyrsiflorus and Sansevieria trifasciata aqueous leaf extract. The plant extract acts both as reducing agent as well as capping agent. To identify the compounds responsible for reduction of silver ions, the functional groups present in plant extract were investigated by FTIR. Various techniques used to characterize synthesized nanoparticles are Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM) and UV–Visible spectrophotometer. Results confirmed that this protocol was simple, rapid, one step, eco-friendly, non-toxic and might be an alternative conventional physical/chemical methods. Conversion of silver nanoparticles takes place at room temperature without the involvement of any hazardous chemicals.


2015 ◽  
Vol 4 (6) ◽  
Author(s):  
Kaushik Roy ◽  
Chandan K. Sarkar ◽  
Chandan K. Ghosh

AbstractIn this study, we for the first time reported green synthesis of silver nanoparticles from silver nitrate solution using leaf extract of


2017 ◽  
Vol 6 (5) ◽  
Author(s):  
Zahra Abbasi ◽  
Sholeh Feizi ◽  
Elham Taghipour ◽  
Parinaz Ghadam

AbstractSilver nanoparticles (AgNPs) have widespread applications. Recently, the synthesis of NPs using plant extract has attracted much attention. In this study, with an easy and rapid process at room temperature, AgNPs were produced by the aqueous extract of dried


2018 ◽  
Vol 772 ◽  
pp. 73-77
Author(s):  
Ruelson S. Solidum ◽  
Arnold C. Alguno ◽  
Rey Capangpangan

We report on the green synthesis of silver nanoparticles utilizing theP.purpureumleaf extract. Controlling the surface plasmon absorption of silver nanoparticles was achieved by regulating the amount of extract concentration and the molarity of silver nitrate solution. The surface plasmon absorption peak is found at around 430nm. The surface plasmon absorption peak have shifted to lower wavelength as the amount of extract is increased, while plasmon absorption peak shifts on a higher wavelength as the concentration of silver nitrate is increased before it stabilized at 430nm. This can be explained in terms of the available nucleation sites promoted by the plant extract as well as the available silver ions present in silver nitrate solution.


Sign in / Sign up

Export Citation Format

Share Document