Inheritance of Basal Branching in Sunflower

Helia ◽  
2018 ◽  
Vol 41 (68) ◽  
pp. 109-115 ◽  
Author(s):  
K.V. Vedmedeva

AbstractCollection of sunflower lines of the Institute of Oilseed Crops was studied based on its branching. Ten lines with the basal branching trait were identified. It was established that the inheritance of the basal branching is due to the recessive alleles of the genes. For lines InLD1240, Z1064, LD835, KG13, VIR130, KG13, LD4, basal branching trait is due to the recessive homozygote of one gene b2. In lines LD72/3, LD156, KG16, I2K2218, basal branching trait is due to the recessive homozygote of two genes b3 and b4. It was established that the genes determining basal branching are distributed in the offspring independently of the genes controlling the top branching.

Helia ◽  
2019 ◽  
Vol 42 (71) ◽  
pp. 203-212 ◽  
Author(s):  
K.V. Vedmedeva

Abstract Aim of our research was to study the genetic diversity and establish the inheritance of top branching trait in the collection of 34 sunflower lines of the Institute of Oilseed Crops of the NAAS. Experiments were carried out in 2005–2016 according to classical cultivation methods, using manual castration, crossings, forced self-pollinating, isolation and visual assessment of the first and second generation of obtained descendants. The statistical reliability of the obtained ratio was confirmed by calculating the Pearson’s chi-squared test. Presence of two loci determining the inheritance of the branching trait in sunflower was established. In one locus, recessive alleles are responsible for manifestation of the branching trait. In the second locus, dominant alleles are responsible for the manifestation of the branching trait. In 23 lines of sunflower, it was established that a recessive homozygote for one gene causes phenotypical top and full branching. In 8 lines of the collection, full branching trait is due to the dominant allele of the gene. In the lines InK235, APS49, the presence of two genes was established, the dominant alleles of which determine full branching trait. In the APS56 line, full branching is controlled by the dominant alleles of three genes.


Confectionery sunflower - a special area of use of sunflower, which requires the creation of marketable seeds quality features. One of the possible ways to create large-fruited sunflower is to create production hybrids and lines. Objective: to evaluate the created new large-fruited sunflower lines by a complex of morphological characters and determine the best lines for use as large-seeds hybrids as parent components or source material. In 2016-2019 years on the basis of the Institute of Oilseed Crops NAAS a study was conducted to assess the economic characteristics of large-fruited sunflower lines. We studied a collection of 27 lines of large-seeds sources. The lines were created by direct selection or crossing and sampling: Reyny of Argentinean origin, Zaporizhzhya confectionery variety, confectionery hybrid with striped pericarp color of Israeli origin, white seed of Turkish origin, synthetic population - donor of complex resistance. To study from the collection, lines were drawn that went through at least 7 generations with selection for seed size. Experience has shown that the shortest growing season for lines 174d and KP11 was 99 days, and the longest for lines I2K670 was 109 days. In the studied collection, the greatest mass of 1000 seeds has the KP11-146.47g line, which is the mother component and does not have branching. The second by weight of 1000 seeds (109 g) stood out line 168v, which also had branches and pollen fertility restoration genes and will be used as the paternal form. The third largest is also one basket line ZKN51-100. The collection included lines originating from the same combination, but with a different morphotype for the presence and absence of branching. So, based on the combination of KP11 x Zaporizhzhya Confectionery, three lines were obtained. A mass of 1000 seeds was observed in 98-86 g, with the branching line having the largest mass of 1000 seeds. The lines created with one combination VK678 x ZKN32: with a branch 168a had a mass of 1000 seeds 95g, and a line 168b - without a branch 109 g. Of the two lines obtained from the descendants of the combination KP11 x the striped hybrid both had branches, but the seeds were much smaller (weight of 1000 seeds 59 and 79 g). The collection also studied samples created on the basis of varieties and populations 160c, 174, 175b, the mass of 1000 seeds of which turned out to be more acceptable for large-fruited use from 83 to 99 g. Summing up the results of studying the collection of newly created lines, we can highlight the lines 162d, 168v, 175b, KP11 that are potentially promising for use in hybrids. The selections showed that large-fruited lines can be obtained from large-fruited varieties, self-pollination of large-fruited hybrids and crossing lines with hybrids and varieties. Self-pollination and selection of large-fruited lines in several generations does not provide the necessary variability for positive changes in selections. The result of the selection by weight of 1000 seeds in the offspring from crosses and from populations creates opportunities for new large-seeds sunflower.


Growth regulators, phytohormones, both natural and artificial, are the main means to control plant ontogenesis. They are involved in regulating the processes of cell differentiation and cell divisions, the formation of tissues and organs, the changes in the rate of growth and development, the duration of the certain stages of ontogenesis. The main classes of phytohormones used in plant biotechnology, in particular, in the induction of haploid structures, are auxins and cytokinins. The mechanism of action of phytohormones on a cell is rather complicated and may have a different character. Understanding the characteristics of the action of phytohormones is complicated by the fact that the system of hormonal regulation of plant life is multicomponent. This is manifested in the fact that the same physiological process is most often influenced not by one, but by several phytohormones, covering a wide range of aspects of cell metabolism. In connection with the foregoing, the purpose of our work was to test a set of nutrient media with different basic composition and different proportions of phytohormones to determine the patterns of their influence on the processes of haploid structure induction in rape anther culture using accessions, developed at the Institute of Oilseed Crops NAAS. The material used was two accessions of winter rapeseed (No. 1 and No. 2) and one sample of spring rapeseed, provided by the Rapeseed Breeding laboratory of the Institute of Oilseed Crops. Incised inflorescences were kept against the background of low temperature of 6–8 ° C for several days, and then, under aseptic conditions, anthers with unripe pollen grains were isolated and planted on nutrient media differing in both basic mineral composition and content of phytohormones. MS (Murashige & Skoog 1962) and B5 (Gamborg et al 1968) media were used as basic media. Phytohormones were added to the basic media in various combinations – BA, 2,4-D, NAA at the concentrations of 0.1-0.6 mg/l. In each treatment up to 300 anthers were cultivated. Differences between treatments were evaluated using standard t-test. Studies have shown that in the anther culture of rapeseed on the tested nutrient media, morphogenic structures of different types (embryoids and callus) were originated. Synthetic auxin 2,4-D, regardless of the composition of the basic medium, caused the formation of structures of both types, though with a low frequency. Phytohormone BA of the cytokinin type had a similar effect. In this case, the frequency of structures was slightly higher, and the developed structures were represented mainly by embryoids. The joint action of cytokinin and auxin was the most favorable for the initiation of morphogenic structures. Such combination of phytohormones caused the formation of these structures with a frequency of 24.5-14.7% in the studied genotypes of winter rape. A similar effect of phytohormones on the induction and development of morphogenic structures was also observed in spring rape. In this case, a single basic MS medium was used. The experiment included treatments where phytohormones were absent (control), as well as various combinations of auxin and cytokinin. In the control treatment, the formation of new structures was not noted. In treatments with phytohormones, in addition to the medium with the combination of auxin and cytokinin, the medium in which only cytokinin was present was also rather effective. The treatment in which the action of auxin 2,4-D was combined with the action of another auxin, NAA, turned out to be practically ineffective. Thus, it was found that for the induction of morphogenic structures from microspores in rape anther culture of the tested genotypes, the combination of cytokinin with auxin, or the use of only single cytokinin BA without other phytohormones, had the most positive effect.


Planta ◽  
2021 ◽  
Vol 253 (1) ◽  
Author(s):  
Ledong Jia ◽  
Junsheng Wang ◽  
Rui Wang ◽  
Mouzheng Duan ◽  
Cailin Qiao ◽  
...  

Abstract Main conclusion The molecular mechanism underlying white petal color in Brassica napus was revealed by transcriptomic and metabolomic analyses. Abstract Rapeseed (Brassica napus L.) is one of the most important oilseed crops worldwide, but the mechanisms underlying flower color in this crop are known less. Here, we performed metabolomic and transcriptomic analyses of the yellow-flowered rapeseed cultivar ‘Zhongshuang 11’ (ZS11) and the white-flowered inbred line ‘White Petal’ (WP). The total carotenoid contents were 1.778-fold and 1.969-fold higher in ZS11 vs. WP petals at stages S2 and S4, respectively. Our findings suggest that white petal color in WP flowers is primarily due to decreased lutein and zeaxanthin contents. Transcriptome analysis revealed 10,116 differentially expressed genes with a fourfold or greater change in expression (P-value less than 0.001) in WP vs. ZS11 petals, including 1,209 genes that were differentially expressed at four different stages and 20 genes in the carotenoid metabolism pathway. BnNCED4b, encoding a protein involved in carotenoid degradation, was expressed at abnormally high levels in WP petals, suggesting it might play a key role in white petal formation. The results of qRT-PCR were consistent with the transcriptome data. The results of this study provide important insights into the molecular mechanisms of the carotenoid metabolic pathway in rapeseed petals, and the candidate genes identified in this study provide a resource for the creation of new B. napus germplasms with different petal colors.


Author(s):  
Miluska Cisneros-Yupanqui ◽  
Vesela I. Chalova ◽  
Hristo R. Kalaydzhiev ◽  
Dasha Mihaylova ◽  
Albert I. Krastanov ◽  
...  

AbstractSince rapeseed and sunflower meals are two of the most representative oilseed crops in the world, this study was focused on ethanol-wash solutes (EWS) obtained as wastes from the protein isolation process of rapeseed and sunflower meals. These meals have been previously valorised; however, the use of the EWS is unexplored. The present study is aimed at the characterisation of their phenolic profile, and antioxidant capacity for preventing lipid oxidation in rapeseed, sunflower, and soybean oil, which has been used as a reference oil. The sunflower EWS exhibited more total phenolic compounds (TPC) and antioxidant activity (119.39 ± 1.13 mg GA/g and 193.97 ± 9.77 mg TE/g, respectively) than the rapeseed one (103.44 ± 5.94 mg GA/g and 89.51 ± 3.17 mg TE/g). The phenolic identification showed hydroxybenzoic and protocatechuic acid in the rapeseed EWS, and pyrogallol and caffeic acid in the sunflower EWS, as the main representative phenols. Both EWS at 15% increased significantly (p < 0.05) the oxidative stability of the oils in the Rancimat equipment with values of antioxidant activity index (AAI) from 1.01 to 1.20, depending on the type of oil employed. In conclusion, the rapeseed and sunflower EWS showed great potential, and they could be used as a source of natural antioxidants within the food industry, replacing the synthetic ones, and promoting the circular economy since they are agro-food wastes.


1991 ◽  
Vol 167 (4) ◽  
pp. 221-228 ◽  
Author(s):  
R. K. Ghosh ◽  
Bikash Kumar Mandal ◽  
B. N. Chatterjee

Author(s):  
Sheri Vaishnav ◽  
M.R. Ananda ◽  
H.M. Atheekur Rehaman ◽  
C. Seenappa ◽  
H.C. Prakasha

Background: Groundnut is one of the most important oilseed crops of India. Improving productivity of groundnut to meet the domestic vegetable oil demand through balanced fertilization is the prime challenge lying before the agronomists in the country. With the aim of evaluating phosphogypsum as a source of sulphur nutrition in groundnut, a field experiment entitled “Response of groundnut (Arachis hypogaea L.) to different levels and time of phosphogypsum nutrition” was conducted at Agronomy field unit, University of Agricultural Sciences Bangalore, during kharif-2019. Methods: Experiment was laid out in randomised complete block design (RCBD) with eleven treatments, of which eight have different combinations of phosphogypsum applied as basal and in split (30 DAS) and one with gypsum as basal alone. Whereas, the remaining two treatments, without any additional source of sulphur are included for comparison. Result: Among eleven treatments, application of phosphogypsum @ 125 kg S eq ha-1 in split recorded highest yield attributes, pod yield (2063 kg ha-1), kernel yield (1418 kg ha-1) and sulphur uptake (11.33 kg ha-1). Which were on par with 100 kg S eq ha-1 in split (2014, 1380 and 10.39 kg ha-1, respectively). All other treatments recorded lower values with lowest in treatments without any additional sulphur source.


1995 ◽  
Vol 24 (4) ◽  
pp. 213-218 ◽  
Author(s):  
Samuel L. Mackenzie

Developments in plant cell and tissue culture, and in gene manipulation techniques, have provided new tools for generating novel plant phenotypes not attainable solely by traditional selection breeding. Driven by the industrial potential, advances in fundamental plant biotechnology are now being directed to the development of new crops with seed oil compositions targeted towards specific applications. The targets encompass both the edible oil and chemical industries, the latter emphasizing those oils which contain unusual fatty acids with functionalities applicable to specific industrial uses. Traditional concepts of the compositions of plant seed oils must be set aside to embrace a new reality in which a high oleic acid oil can be produced in several current oilseed crops.


Sign in / Sign up

Export Citation Format

Share Document