scholarly journals Morphological and molecular characteristics of foliar nematode attacking silver birch (Betula pendula Roth) in Poland

2017 ◽  
Vol 54 (3) ◽  
pp. 250-256 ◽  
Author(s):  
A. Chałańska ◽  
A. Bogumił ◽  
G. Winiszewska ◽  
K. Kowalewska ◽  
T. Malewski

SummaryAphelenchoides fragariae (Ritzema Bos, 1890) Christie, 1932 was isolated from leaves of silver birch (Betula pendula Roth) seedlings proving that the source of infection was anemones plants. This is the first report to our best knowledge showing that the source of nematode infection of a woody plant could be a perennial plant. A. fragariae was identified by morphometric and molecular analyses. Morphological diagnosis based on the bending shape of the tail of males and pronounced apex and rostrum proved to be the most accurate reliable characteristic. On the opposite, the high variability of the mucron shape in female tails made the identification by microscopic analyses difficult. Identification of the species was confirmed by analysis of 28S rDNA sequences. The morphometric data of adults extracted from silver birch was compared with that of nematodes isolated from Anemone hupehensis (Lemoine) Lemoine. Males body length varied highly in samples collected from both host plant species.

2021 ◽  
Vol 95 ◽  
Author(s):  
A. Rana ◽  
A.H. Bhat ◽  
A.K. Chaubey ◽  
V. Půža ◽  
J. Abolafia

Abstract A population of a nematode species belonging to the genus Oscheius was isolated in western Uttar Pradesh, India. Morphological and morphometrical studies on this species showed its high similarity with six species described previously from Pakistan (Oscheius citri, O. cobbi, O. cynodonti, O. esculentus, O. punctatus and O. sacchari). The molecular analysis of the ITS1-5.8S-ITS2 rDNA sequences of the Indian population and the six species described from Pakistan showed that all the sequences are almost identical. Thus, based on morphological and molecular characteristics, all of the six above-mentioned Pakistani species and Indian strain do not differ from each other, hence can be considered synonyms. The correct name for this taxon is the first described species O. citri. Additionally, the phylogenetic analysis of the 18S rDNA and the 28S rDNA sequences showed that Oscheius citri is sister to the clade formed by O. chongmingensis and O. rugaoensis from China. The high similarity of morphological and morphometric characteristics of O. citri and other species, O. maqbooli, O. nadarajani, O. niazii, O. shamimi and O. siddiqii, suggest their conspecificity; however, lack of molecular data for these species does not allow this hypothesis to be tested.


Forests ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 599
Author(s):  
Héloïse Dubois ◽  
Hugues Claessens ◽  
Gauthier Ligot

Forest health problems arising from climate change, pests and pathogens are a threat to the main timber tree species. As a result, silver birch (Betula pendula Roth) has become a precious asset for meeting oncoming forestry challenges in western Europe. However, silviculture guidelines to produce high-value birch logs in this region are lacking. Producing large-sized birch trunks requires crown release, i.e., removing crown competitors around selected target trees. These interventions are currently seldom carried out or else too late when the growth potential of the trees has already diminished. This study set out to ascertain the diameter at breast height (dbh) that could be reached by crown-released birch, determine dbh-associated crown diameters, and further characterize the gain obtained from early crown release on birch dbh growth. We measured 704 birch trees that had undergone crown release in 38 naturally regenerated pure birch stands in southern Belgium and in northeastern France. We then evaluated the variation in stem and crown diameter, and analyzed increments in response to the earliness of the interventions in three subsamples, also compared with control target birch. We found that trees with a dbh of 50 cm could be grown within 60 years. Based on crown diameter, to produce 40, 50 and 60 cm dbh trunk, the distance required between target birch trees at the end of the rotation was around 8, 10 and 12 m. With no intervention and in ordinary dense birch regenerations, the dbh increment was found to decline once the stand reached age 4–7 years. Starting crown release in stands aged 4–5 years can double the dbh increment of target trees and provide a continual gain that may last up to 20 years. When birch crowns are released after 9–12 years, it may already be too late for them to recover their best growth rate. Our contribution should help complete emerging guidelines in support of birch silviculture development.


Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4633
Author(s):  
Aleksandra Ostapiuk ◽  
Łukasz Kurach ◽  
Maciej Strzemski ◽  
Jacek Kurzepa ◽  
Anna Hordyjewska

Silver birch, Betula pendula Roth, is one of the most common trees in Europe. Due to its content of many biologically active substances, it has long been used in medicine and cosmetics, unlike the rare black birch, Betula obscura Kotula. The aim of the study was therefore to compare the antioxidant properties of extracts from the inner and outer bark layers of both birch trees towards the L929 line treated with acetaldehyde. Based on the lactate dehydrogenase test and the MTT test, 10 and 25% concentrations of extracts were selected for the antioxidant evaluation. All extracts at tested concentrations reduced the production of hydrogen peroxide, superoxide anion radical, and 25% extract decreased malonic aldehyde formation in acetaldehyde-treated cells. The chemical composition of bark extracts was accessed by IR and HPLC-PDA methods and surprisingly, revealed a high content of betulin and lupeol in the inner bark extract of B. obscura. Furthermore, IR analysis revealed differences in the chemical composition of the outer bark between black and silver birch extracts, indicating that black birch may be a valuable source of numerous biologically active substances. Further experiments are required to evaluate their potential against neuroinflammation, cancer, viral infections, as well as their usefulness in cosmetology.


2021 ◽  
Vol 22 (14) ◽  
pp. 7269
Author(s):  
Jean-Stéphane Venisse ◽  
Eele Õunapuu-Pikas ◽  
Maxime Dupont ◽  
Aurélie Gousset-Dupont ◽  
Mouadh Saadaoui ◽  
...  

Aquaporin water channels (AQPs) constitute a large family of transmembrane proteins present throughout all kingdoms of life. They play key roles in the flux of water and many solutes across the membranes. The AQP diversity, protein features, and biological functions of silver birch are still unknown. A genome analysis of Betula pendula identified 33 putative genes encoding full-length AQP sequences (BpeAQPs). They are grouped into five subfamilies, representing ten plasma membrane intrinsic proteins (PIPs), eight tonoplast intrinsic proteins (TIPs), eight NOD26-like intrinsic proteins (NIPs), four X intrinsic proteins (XIPs), and three small basic intrinsic proteins (SIPs). The BpeAQP gene structure is conserved within each subfamily, with exon numbers ranging from one to five. The predictions of the aromatic/arginine selectivity filter (ar/R), Froger’s positions, specificity-determining positions, and 2D and 3D biochemical properties indicate noticeable transport specificities to various non-aqueous substrates between members and/or subfamilies. Nevertheless, overall, the BpePIPs display mostly hydrophilic ar/R selective filter and lining-pore residues, whereas the BpeTIP, BpeNIP, BpeSIP, and BpeXIP subfamilies mostly contain hydrophobic permeation signatures. Transcriptional expression analyses indicate that 23 BpeAQP genes are transcribed, including five organ-related expressions. Surprisingly, no significant transcriptional expression is monitored in leaves in response to cold stress (6 °C), although interesting trends can be distinguished and will be discussed, notably in relation to the plasticity of this pioneer species, B. pendula. The current study presents the first detailed genome-wide analysis of the AQP gene family in a Betulaceae species, and our results lay a foundation for a better understanding of the specific functions of the BpeAQP genes in the responses of the silver birch trees to cold stress.


Planta ◽  
2005 ◽  
Vol 222 (4) ◽  
pp. 699-708 ◽  
Author(s):  
Heidi Tiimonen ◽  
Tuija Aronen ◽  
Tapio Laakso ◽  
Pekka Saranpää ◽  
Vincent Chiang ◽  
...  

2002 ◽  
Vol 69 (1) ◽  
pp. 20-25 ◽  
Author(s):  
Jean-Lou Justine ◽  
Richard Jovelin ◽  
Lassâd Neifar ◽  
Isabelle Mollaret ◽  
L. H Susan Lim ◽  
...  

2014 ◽  
Vol 71 ◽  
pp. 32-35 ◽  
Author(s):  
Wojciech Dmuchowski ◽  
Dariusz Gozdowski ◽  
Paulina Brągoszewska ◽  
Aneta Helena Baczewska ◽  
Irena Suwara

1998 ◽  
Vol 76 (9) ◽  
pp. 1570-1583 ◽  
Author(s):  
W Gams ◽  
K O'Donnell ◽  
H -J Schroers ◽  
M Christensen

Unlike most phialide-producing fungi that liberate a multiplicity of conidia from each conidiogenous cell, only single conidia are formed on phialide-like conidiogenous cells in Aphanocladium, Verticimonosporium, and some species of Sibirina. A group of isolates obtained from soil of native Artemisia tridentata (sagebrush) grassland in Wyoming and from desert soil in Iraq is compared with these genera and classified as a fourth genus, Stanjemonium, honouring Stanley J. Hughes. Phylogenetic analyses of partial nuclear small- (18S) and large-subunit (28S) rDNA sequences indicate that Stanjemonium spp. form a monophyletic group with Emericellopsis. Sequences from the nuclear 18S and 28S rDNA were too conserved to resolve morphological species of Stanjemonium; however, phylogenetic analysis of b-tubulin and translation elongation factor 1a gene exons and introns resolved all species distinguished morphologically. Numerous conidiogenous cells or denticles are scattered along the cells of aerial hyphae in Aphanocladium and Stanjemonium spp., very rapidly collapsing into denticles in the former, somewhat more persistent and leaving broad scars in the latter. In Cladobotryum-Sibirina and Verticimonosporium spp., conidiogenous cells are discrete in terminal and intercalary whorls; phialides of the latter taxon are particularly swollen. The taxonomy of Aphanocladium is not yet resolved. Two species are recognized in Verticimonosporium. Three new species of Stanjemonium are described, and one new combination from Aphanocladium is proposed, along with one new species of Cladobotryum.Key words: Aphanocladium, Cladobotryum, conidiogenesis, hyphomycetes, molecular phylogeny, phialide, Stanjemonium, systematics, Verticimonosporium.


Sign in / Sign up

Export Citation Format

Share Document