Evaluation of the effects of compression combined with heat treatment by nanoindentation (NI) of poplar cell walls

Holzforschung ◽  
2014 ◽  
Vol 68 (2) ◽  
pp. 167-173 ◽  
Author(s):  
Xinzhou Wang ◽  
Yuhe Deng ◽  
Siqun Wang ◽  
Chen Min ◽  
Yujie Meng ◽  
...  

Abstract A combination of compression and heat treatment is a modification method that has great potential for improving the mechanical properties and dimensional stability of wood materials in industrial application. The objective of this project was to track changes in the microstructure, chemical composition, cellulose crystallinity, and mechanical properties of the treated poplar cell wall to investigate the mechanism of modification. Poplar boards were compressed at 100°C and subsequently treated in the hot press at 200°C. The results indicated that the treatment contributed to a reduction in porosity without obvious mechanical compression and damage to the cell wall. Hemicellulose degraded, however, and the relative lignin content and cellulose crystallinity increased during the process. The observed increase in relative lignin content and crystallinity may contribute to the improvement of mechanical properties. The longitudinal elastic modulus and hardness of poplar cell walls increased significantly from 12.5 and 0.39 GPa for the control to a maximum of 15.7 and 0.51 GPa for compressed wood with HT, respectively.

Holzforschung ◽  
2002 ◽  
Vol 56 (4) ◽  
pp. 395-401 ◽  
Author(s):  
W. Gindl

Summary Cell-wall lignin content and composition, as well as microfibril angle of normal and compression wood samples were determined prior to mechanical testing in compression parallel to the grain. No effect of increased lignin content on the Young's modulus in compression wood was discernible because of the dominating influence of microfibril angle. In contrast, compressive strength of compression wood was not negatively affected by the high microfibril angle. It is proposed that the observed high lignification in compression wood increases the resistance of the cell walls to compression failure. An increased percentage of p-hydroxyphenylpropane units observed in compression wood lignin may also contribute to the comparably high compressive strength of compression wood.


Author(s):  
S. E. Keckler ◽  
D. M. Dabbs ◽  
N. Yao ◽  
I. A. Aksay

Cellular organic structures such as wood can be used as scaffolds for the synthesis of complex structures of organic/ceramic nanocomposites. The wood cell is a fiber-reinforced resin composite of cellulose fibers in a lignin matrix. A single cell wall, containing several layers of different fiber orientations and lignin content, is separated from its neighboring wall by the middle lamella, a lignin-rich region. In order to achieve total mineralization, deposition on and in the cell wall must be achieved. Geological fossilization of wood occurs as permineralization (filling the void spaces with mineral) and petrifaction (mineralizing the cell wall as the organic component decays) through infiltration of wood with inorganics after growth. Conversely, living plants can incorporate inorganics into their cells and in some cases into the cell walls during growth. In a recent study, we mimicked geological fossilization by infiltrating inorganic precursors into wood cells in order to enhance the properties of wood. In the current work, we use electron microscopy to examine the structure of silica formed in the cell walls after infiltration of tetraethoxysilane (TEOS).


Holzforschung ◽  
2017 ◽  
Vol 71 (2) ◽  
pp. 129-135 ◽  
Author(s):  
Yanjun Li ◽  
Chengjian Huang ◽  
Li Wang ◽  
Siqun Wang ◽  
Xinzhou Wang

Abstract The effects of thermal treatment of bamboo at 130, 150, 170, and 190°C for 2, 4, and 6 h were investigated in terms of changes in chemical composition, cellulose crystallinity, and mechanical behavior of the cell-wall level by means of wet chemical analysis, X-ray diffraction (XRD), and nanoindentation (NI). Particularly, the reduced elastic modulus (Er), hardness (H), and creep behavior were in focus. Both the temperature and treatment time showed significant effects. Expectedly, the hemicelluloses were degraded and the relative lignin content was elevated, while the crystallinity of the cellulose moiety was increased upon thermal treatment. The Er and H data of the cell wall were increased after 6 h treatment at 190°C, from 18.4 to 22.0 GPa and from 0.45 to 0.65 GPa, respectively. The thermal treatment led to a decrease of the creep ratio (CIT) under the same conditions by ca. 28%. The indentation strain state (εi) also decreased significantly after thermal treatment during the load-holding stage.


Fibers ◽  
2018 ◽  
Vol 6 (1) ◽  
pp. 6 ◽  
Author(s):  
Camille Goudenhooft ◽  
David Siniscalco ◽  
Olivier Arnould ◽  
Alain Bourmaud ◽  
Olivier Sire ◽  
...  

2002 ◽  
Vol 80 (10) ◽  
pp. 1029-1033 ◽  
Author(s):  
W Gindl ◽  
H S Gupta ◽  
C Grünwald

The lignin content and the mechanical properties of lignifying and fully lignified spruce tracheid secondary cell walls were determined using UV microscopy and nano-indentation, respectively. The average lignin content of developing tracheids was 0.10 g·g–1, as compared with 0.21 g·g–1 in mature tracheids. The modulus of elasticity of developing cells was on average 22% lower than the one measured in mature, fully lignified cells. For the longitudinal hardness, a larger difference of 26% was observed. As lignifying cells in the cambial zone are undergoing cell wall development, spaces in the cellulose–hemicellulose structure are filled with lignin and the density of the cell wall is believed to increase. It is therefore suggested that the observed difference in modulus of elasticity between developing and fully lignified cell walls is due to the filling of spaces with lignin and an increase of the packing density of the cell wall during lignification. Although remarkably less stiff than the composite polysaccharide structure in the secondary cell wall, lignin may be considered equally hard. Therefore, the observed increase in lignin content may contribute directly to the measured increase of hardness.Key words: secondary cell wall, hardness, lignin, modulus of elasticity, wood formation.


1977 ◽  
Vol 89 (2) ◽  
pp. 327-340 ◽  
Author(s):  
E. Jane Morris ◽  
J. S. D. Bacon

SummaryThe digestibilities of grass cell wall constituents determined in a digestion trial were compared with those obtained by suspending various isolated cell wall preparations in nylon bags in the rumen of a sheep. Particular attention was paid to acetyl groups and to individual sugars, which were determined in both cases by gas liquid chromatography.For dried grass and hay in the digestion trial the cell wall constituents showed digestibilities decreasing in the following order: arabinose, galactose, glucose, xylose, acetyl, lignin.For a leaf cell wall preparation derived from all cell types except mesophyll, the nylon bag technique allowed the same order of digestibilities; rhamnose and uronic acids were also measured and found to be rapidly digested. Mesophyll cell walls placed in nylon bags were more readily digested than non-mesophyll. All the sugars, and also acetyl groups, were digested to the same extent.In a grass cell wall preparation isolated from sheep faeces, tested similarly, xylose and glucose were digested to the same extent, but acetyl groups were less digested.Removal of acetyl groups, using sodium ethoxide, which left the sugar composition and lignin content unchanged, increased the digestibility particularly of the cell walls from faeces.The results are discussed with reference to the relationship between cell wall composition and digestibility.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Yang Tian ◽  
Chien-Yuan Lin ◽  
Joon-Hyun Park ◽  
Chuan-Yin Wu ◽  
Ramu Kakumanu ◽  
...  

Abstract Background The development of bioenergy crops with reduced recalcitrance to enzymatic degradation represents an important challenge to enable the sustainable production of advanced biofuels and bioproducts. Biomass recalcitrance is partly attributed to the complex structure of plant cell walls inside which cellulose microfibrils are protected by a network of hemicellulosic xylan chains that crosslink with each other or with lignin via ferulate (FA) bridges. Overexpression of the rice acyltransferase OsAT10 is an effective bioengineering strategy to lower the amount of FA involved in the formation of cell wall crosslinks and thereby reduce cell wall recalcitrance. The annual crop sorghum represents an attractive feedstock for bioenergy purposes considering its high biomass yields and low input requirements. Although we previously validated the OsAT10 engineering approach in the perennial bioenergy crop switchgrass, the effect of OsAT10 expression on biomass composition and digestibility in sorghum remains to be explored. Results We obtained eight independent sorghum (Sorghum bicolor (L.) Moench) transgenic lines with a single copy of a construct designed for OsAT10 expression. Consistent with the proposed role of OsAT10 in acylating arabinosyl residues on xylan with p-coumarate (pCA), a higher amount of p-coumaroyl-arabinose was released from the cell walls of these lines upon hydrolysis with trifluoroacetic acid. However, no major changes were observed regarding the total amount of pCA or FA esters released from cell walls upon mild alkaline hydrolysis. Certain diferulate (diFA) isomers identified in alkaline hydrolysates were increased in some transgenic lines. The amount of the main cell wall monosaccharides glucose, xylose, and arabinose was unaffected. The transgenic lines showed reduced lignin content and their biomass released higher yields of sugars after ionic liquid pretreatment followed by enzymatic saccharification. Conclusions Expression of OsAT10 in sorghum leads to an increase of xylan-bound pCA without reducing the overall content of cell wall FA esters. Nevertheless, the amount of total cell wall pCA remains unchanged indicating that most pCA is ester-linked to lignin. Unlike other engineered plants overexpressing OsAT10 or a phylogenetically related acyltransferase with similar putative function, the improvements of biomass saccharification efficiency in sorghum OsAT10 lines are likely the result of lignin reductions rather than reductions of cell wall-bound FA. These results also suggest a relationship between xylan-bound pCA and lignification in cell walls.


Forests ◽  
2019 ◽  
Vol 10 (8) ◽  
pp. 646 ◽  
Author(s):  
Wang ◽  
Chen ◽  
Xie ◽  
Cai ◽  
Yuan ◽  
...  

The local chemistry and mechanics of the control and phenol formaldehyde (PF) resin modified wood cell walls were analyzed to illustrate the modification mechanism of wood. Masson pine (Pinus massoniana Lamb.) is most widely distributed in the subtropical regions of China. However, the dimensional instability and low strength of the wood limits its use. Thus, the wood was modified by PF resin at concentrations of 15%, 20%, 25%, and 30%, respectively. The density, surface morphology, chemical structure, cell wall mechanics, shrinking and swelling properties, and macro-mechanical properties of Masson pine wood were analyzed to evaluate the modification effectiveness. The morphology and Raman spectra changes indicated that PF resin not only filled in the cell lumens, but also penetrated into cell walls and interacted with cell wall polymers. The filling and diffusing of resin in wood resulted in improved dimensional stability, such as lower swelling and shrinking coefficients, an increase in the elastic modulus (Er) and hardness (H) of wood cell walls, the hardness of the transverse section and compressive strength of the wood. Both the dimensional stability and mechanical properties improved as the PF concentration increased to 20%; that is, a PF concentration of 20% may be preferred to modify Masson pine wood.


Forests ◽  
2020 ◽  
Vol 11 (7) ◽  
pp. 719
Author(s):  
Tiantian Yang ◽  
Emil Engelund Thybring ◽  
Maria Fredriksson ◽  
Erni Ma ◽  
Jinzhen Cao ◽  
...  

To investigate the effects of changes in biopolymer composition on moisture in acetylated poplar wood (Populus euramericana Cv.), the acetylation of control wood was compared to the acetylation of wood with reduced hemicellulose or lignin content (about 9% reduction of total specimen dry weight in both cases). Time-domain nuclear magnetic resonance relaxometry of water-saturated wood gave spin–spin relaxation times (T2) of water populations, while deuteration in a sorption balance was used to characterize the hydroxyl accessibility of the wood cell walls. As expected, the acetylation of pyridine-swelled wood reduced hydroxyl accessibility and made the cell wall less accessible to water, resulting in a reduction of cell wall moisture content by about 24% compared with control wood. Hemicellulose loss per se increased the spin–spin relaxation time of cell wall water, while delignification had the opposite effect. The combined effect of hemicellulose removal and acetylation caused more than a 30% decrease of cell wall moisture content when compared with control wood. The acetylated and partially delignified wood cell walls contained higher cell wall moisture content than acetylated wood. An approximate theoretical calculation of hydroxyl accessibility for acetylated wood was in the low range, but it agreed rather well with the measured accessibility, while acetylated and partially hemicellulose-depleted and partially delignified wood for unknown reasons resulted in substantially lower hydroxyl accessibilities than the theoretical estimate.


2020 ◽  
Vol 21 (17) ◽  
pp. 6094
Author(s):  
Fabien Baldacci-Cresp ◽  
Julien Le Roy ◽  
Brigitte Huss ◽  
Cédric Lion ◽  
Anne Créach ◽  
...  

Lignin is present in plant secondary cell walls and is among the most abundant biological polymers on Earth. In this work we investigated the potential role of the UGT72E gene family in regulating lignification in Arabidopsis. Chemical determination of floral stem lignin contents in ugt72e1, ugt72e2, and ugt72e3 mutants revealed no significant differences compared to WT plants. In contrast, the use of a novel safranin O ratiometric imaging technique indicated a significant increase in the cell wall lignin content of both interfascicular fibers and xylem from young regions of ugt72e3 mutant floral stems. These results were globally confirmed in interfascicular fibers by Raman microspectroscopy. Subsequent investigation using a bioorthogonal triple labelling strategy suggested that the augmentation in lignification was associated with an increased capacity of mutant cell walls to incorporate H-, G-, and S-monolignol reporters. Expression analysis showed that this increase was associated with an up-regulation of LAC17 and PRX71, which play a key role in lignin polymerization. Altogether, these results suggest that UGT72E3 can influence the kinetics of lignin deposition by regulating monolignol flow to the cell wall as well as the potential of this compartment to incorporate monomers into the growing lignin polymer.


Sign in / Sign up

Export Citation Format

Share Document