Influence of strain rate, temperature and fatigue on the radial compression behaviour of Norway spruce

Holzforschung ◽  
2017 ◽  
Vol 71 (6) ◽  
pp. 505-514 ◽  
Author(s):  
Carolina Moilanen ◽  
Tomas Björkqvist ◽  
Markus Ovaska ◽  
Juha Koivisto ◽  
Amandine Miksic ◽  
...  

Abstract A dynamic elastoplastic compression model of Norway spruce for virtual computer optimization of mechanical pulping processes was developed. The empirical wood behaviour was fitted to a Voigt-Kelvin material model, which is based on quasi static compression and high strain rate compression tests (QSCT and HSRT, respectively) of wood at room temperature and at high temperature (80–100°C). The effect of wood fatigue was also included in the model. Wood compression stress-strain curves have an initial linear elastic region, a plateau region and a densification region. The latter was not reached in the HSRT. Earlywood (EW) and latewood (LW) contributions were considered separately. In the radial direction, the wood structure is layered and can well be modelled by serially loaded layers. The EW model was a two part linear model and the LW was modelled by a linear model, both with a strain rate dependent term. The model corresponds well to the measured values and this is the first compression model for EW and LW that is based on experiments under conditions close to those used in mechanical pulping.


2017 ◽  
Vol 9 (2) ◽  
pp. 121-140 ◽  
Author(s):  
Tae Kwang Yoo ◽  
Tong Qiu

This article presents the results of a series of experimental testing and numerical modeling studies to optimize the parameters of a constitutive material model to accurately simulate the behavior of polystyrene crushable concrete during impact loading using LS-DYNA. Quasi-static compression tests and confined drop impact tests were conducted. To model the quasi-static compression tests, the response surface methodology was used to optimize Poisson’s ratio and friction angle in the pseudo-tensor model in LS-DYNA. Using the optimized model parameters, the simulated compression stress versus strain relationship showed an excellent agreement with those from the compression tests. To model the confined drop impact tests, the strain rate sensitivity parameter in LS-DYNA was optimized by comparing the drop impact simulations at different strain rate sensitivity values with the drop impact tests. This study suggests that the pseudo-tensor material model is potentially suitable for modeling crushable concrete. Although the optimized constitutive model parameters are specific for the polystyrene concrete mix used in this study, similar approach can be used to optimize model parameters for other polystyrene concrete mixes.



Polymers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1537
Author(s):  
Luděk Hynčík ◽  
Petra Kochová ◽  
Jan Špička ◽  
Tomasz Bońkowski ◽  
Robert Cimrman ◽  
...  

Current industrial trends bring new challenges in energy absorbing systems. Polymer materials as the traditional packaging materials seem to be promising due to their low weight, structure, and production price. Based on the review, the linear low-density polyethylene (LLDPE) material was identified as the most promising material for absorbing impact energy. The current paper addresses the identification of the material parameters and the development of a constitutive material model to be used in future designs by virtual prototyping. The paper deals with the experimental measurement of the stress-strain relations of linear low-density polyethylene under static and dynamic loading. The quasi-static measurement was realized in two perpendicular principal directions and was supplemented by a test measurement in the 45° direction, i.e., exactly between the principal directions. The quasi-static stress-strain curves were analyzed as an initial step for dynamic strain rate-dependent material behavior. The dynamic response was tested in a drop tower using a spherical impactor hitting a flat material multi-layered specimen at two different energy levels. The strain rate-dependent material model was identified by optimizing the static material response obtained in the dynamic experiments. The material model was validated by the virtual reconstruction of the experiments and by comparing the numerical results to the experimental ones.



Author(s):  
Ashutosh Dikshit ◽  
Johnson Samuel ◽  
Richard E. DeVor ◽  
Shiv G. Kapoor

A continuum-based microstructure-level material model for simulation of polycarbonate carbon nanotube (CNT) composite machining has been developed wherein polycarbonate and CNT phases are modeled separately. A parametrization scheme is developed to characterize the microstructure of composites having different loadings of carbon nanotubes. The Mulliken and Boyce constitutive model [2006, “Mechanics of the Rate Dependent Elastic Plastic Deformation of Glassy Polymers from Low to High Strair Rates,” Int. J. Solids Struct., 43(5), pp. 1331–1356] for polycarbonate has been modified and implemented to capture thermal effects. The CNT phase is modeled as a linear elastic material. Dynamic mechanical analyzer tests are conducted on the polycarbonate phase to capture the changes in material behavior with temperature and strain rate. Compression tests are performed over a wide range of strain rates for model validation. The model predictions for yield stress are seen to be within 10% of the experimental results for all the materials tested. The model is used to study the effect of weight fraction, length, and orientation of CNTs on the mechanical behavior of the composites.



2020 ◽  
Vol 10 (22) ◽  
pp. 8286
Author(s):  
Nicolas Bailly ◽  
Yvan Petit ◽  
Jean-Michel Desrosier ◽  
Olivier Laperriere ◽  
Simon Langlois ◽  
...  

Vinyl nitrile foams are polymeric closed-cell foam commonly used for energy absorption in helmets. However, their impact behavior has never been described in isolation. This study aims to characterize the strain rate dependent behavior of three VN foams in compression and combined compression and shear. Vinyl nitrile samples of density 97.5, 125, and 183 kg/m3 were submitted to quasi-static compression (0.01 s−1) and impacts in compression and combined compression and shear (loading direction of 45°). For impacts, a drop test rig was used, and a method was developed to account for strain rate variation during impactor deceleration. Young’s modulus and stress at plateau were correlated with foam density in both compression and combined loading. Vinyl nitrile foams were strain rate dependent: The absorbed energy at the onset of densification was two to four times higher at 100 s−1 than at 0.01 s−1. In combined loading, the compressive stress at yield was reduced by 43% at a high strain rate. Compared to expanded polypropylene, vinyl nitrile foams transmitted less stress at the onset of densification for equivalent absorbed energy and presented a larger ratio between the compression and shear stresses in combined loading (0.37 at yield). This larger ratio between the compression and shear stresses might explain why vinyl nitrile helmet liners are thought to be better at reducing head rotational acceleration than expanded polypropylene helmet liners.









Author(s):  
Luděk Hynčík ◽  
Petra Kochová ◽  
Jan Špička ◽  
Tomasz Bońkowski ◽  
Robert Cimrman ◽  
...  

Current industrial trends bring new challenges in energy absorbing systems. Polymer materials as the traditional packaging material seem to be promising due to their low weight, structure and production price. Based on the review, the linear low-density polyethylene material was identified as the most promising material for absorbing impact energy. The current paper addresses the identification of the material parameters and the development of a Constitutive material model to be used in future design by virtual prototyping. The paper deals with the experimental measurement of the stress-strain relations of the linear low-density polyethylene under static and dynamic loading. The quasi-static measurement is realized in two perpendicular principal directions and is supplemented by a test measurement in the 45 degrees direction, i.e. exactly between the principal directions. The quasi-static stress-strain curves are analyzed as an initial step for dynamic strain rate dependent material behavior. The dynamic response is tested in the drop tower using a spherical impactor hitting the flat material multi-layered specimen at two different energy levels. The strain rate dependent material model is identified by optimizing the static material response obtained in the dynamic experiments. The material model is validated by the virtual reconstruction of the experiments and by comparing the numerical results to the experimental ones.



Author(s):  
Gholam Hossein Majzoobi ◽  
Niloufar Zarei

Volume change versus pressure is expressed through an equation of state (EOS) such as the well-known Mie-Gruneisen equation. Equation of state is an essential requirement to be defined for numerical simulation of high rate events such as impact. All EOSs have some coefficients which are identified by experiment and are usually considered constant and strain rate independent. In this study, the effect of strain rate on the coefficients of Mie-Gruneisen equation is obtained for polyethylene by experiment and numerical simulation. The low and high strain rate compression tests are conducted using Instron testing machine and Hopkinson bar, respectively. The load-displacement and load-volume change curves are obtained from the experiments. The strain rate dependent constants of Mie-Gruneisen equation of state are obtained through a combined experimental/numerical/optimization technique. The compression test is simulated using Ls-dyna hydrocode. The results show that the coefficient γ is not affected by strain rate but the coefficients C and S1 are severely strain rate dependent. The latter varies with strain rate in a linear fashion and the former varies cubically with strain rate.



Sign in / Sign up

Export Citation Format

Share Document