Stress Relaxation of Sugi (Cryptomeria japonica D.Don) Wood in Radial Compression under High Temperature Steam

Holzforschung ◽  
1999 ◽  
Vol 53 (5) ◽  
pp. 541-546 ◽  
Author(s):  
W. Dwianto ◽  
T. Morooka ◽  
M. Norimoto ◽  
T. Kitajima

Summary To clarify the mechanism of the permanent fixation of compressive deformation of wood by high temperature steaming, stress relaxation and stress-strain relationships in the radial compression for Sugi (Cryptomeria japonica D.Don) wood were measured under steam at temperatures up to 200°C. The stress relaxation curves above 100°C were quite different in shape from those below 100°C, showing a rapid decrease in stress with increasing temperature. In the stress-strain relationships measured above 140°C, the stress reduced as pre-steaming time increased when compared at the same strain. The recovery of compressive deformation (strain recovery) was decreased with steaming time and reached almost 0 in 10 min at 200°C. The relationship between the residual stress and the strain recovery at the end of relaxation measurements could be expressed by a single curve regardless of time and temperature. The permanent fixation of deformation by steaming below 200°C was considered to be due to chain scission of hemicelluloses accompanying a slight cleavage of lignin. In some cases, the increase in regularity of the crystalline lattice space of microfibrils or the formation of crosslinks between the cell wall polymers seemed to play an important role in the permanent fixation of compressive deformation.

Polymers ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1342 ◽  
Author(s):  
John Sweeney ◽  
Paul Spencer ◽  
Karthik Nair ◽  
Phil Coates

This is a study of the modelling and prediction of strain recovery in a polylactide. Strain recovery near the glass transition temperature is the underlying mechanism for the shape memory in an amorphous polymer. The investigation is aimed at modelling such shape memory behaviour. A PLA-based copolymer is subjected to stress–strain, stress relaxation and strain recovery experiments at large strain at 60 °C just below its glass transition temperature. The material is 13% crystalline. Using published data on the mechanical properties of the crystals, finite element modelling was used to determine the effect of the crystal phase on the overall mechanical behaviour of the material, which was found to be significant. The finite element models were also used to relate the stress–strain results to the yield stress of the amorphous phase. This yield stress was found to possess strain rate dependence consistent with an Eyring process. Stress relaxation experiments were also interpreted in terms of the Eyring process, and a two-process Eyring-based model was defined that was capable of modelling strain recovery behaviour. This was essentially a model of the amorphous phase. It was shown to be capable of useful predictions of strain recovery.


Holzforschung ◽  
2000 ◽  
Vol 54 (1) ◽  
pp. 104-108 ◽  
Author(s):  
W. Dwianto ◽  
T. Morooka ◽  
M. Norimoto

Summary Creep compliance curves in the radial compression were measured under steam for sugi (Cryptomeria japonica D. Don) at temperatures up to 200°C. The creep compliance curves for 30 min (I) and those with pre-steaming for 30 min (II) were well connected at 30 min when the structural changes due to the degradation of hemicelluloses or the decomposition of lignin as well as hemicelluloses occurred. However, the creep curves (I) at 30 min differed markedly from creep curves (II) when the structural changes due to the increase in regularity of crystalline lattice spacing of the microfibrils or the formation of cross-linkages between the cell wall polymers occurred. It was concluded that two kinds of structural changes could be detected well by creep measurement.


Alloy Digest ◽  
2005 ◽  
Vol 54 (12) ◽  

Abstract Wieland K-88 is a copper alloy with very high electrical and thermal conductivity, good strength, and excellent stress relaxation resistance at elevated temperatures. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: CU-738. Producer or source: Wieland Metals Inc.


2013 ◽  
Vol 21 (1) ◽  
pp. 43-51
Author(s):  
O. Bapokutty ◽  
◽  
Z. Sajuri ◽  
J. Syarif ◽  
◽  
...  

ACS Omega ◽  
2021 ◽  
Author(s):  
Takahiro Doi ◽  
Hideaki Takagi ◽  
Nobutaka Shimizu ◽  
Noriyuki Igarashi ◽  
Shinichi Sakurai

2016 ◽  
Vol 2016 ◽  
pp. 1-14 ◽  
Author(s):  
Kaleem A. Zaidi ◽  
Umesh K. Sharma ◽  
N. M. Bhandari ◽  
P. Bhargava

HSC normally suffers from low stiffness and poor strain capacity after exposure to high temperature. High strength confined fibrous concrete (HSCFC) is being used in industrial structures and other high rise buildings that may be subjected to high temperature during operation or in case of an accidental fire. The proper understanding of the effect of elevated temperature on the stress-strain relationship of HSCFC is necessary for the assessment of structural safety. Further stress-strain model of HSCFC after exposure to high temperature is scarce in literature. Experimental results are used to generate the complete stress-strain curves of HSCFC after exposure to high temperature in compression. The variation in concrete mixes was achieved by varying the types of fibre, volume fraction of fibres, and temperature of exposure from ambient to 800°C. The degree of confinement was kept constant in all the specimens. A comparative assessment of different models on the high strength confined concrete was also conducted at different temperature for the accuracy of proposed model. The proposed empirical stress-strain equations are suitable for both high strength confined concrete and HSCFC after exposure to high temperature in compression. The predictions were found to be in good agreement and well fit with experimental results.


2013 ◽  
Vol 328 ◽  
pp. 950-954
Author(s):  
Wei Wei Zhang ◽  
Hong Xu ◽  
Hong Yuan Li

An analytical method based on a creep model is being developed to investigate the effect of retightening on stress relaxation behavior for high-temperature turbine and valve studs/bolts. In order to validate the approach, the calculated results are compared to the results of uniaxial reloading stress relaxation testing, which were performed by the National Research Institute for Metals of Japan (NRIM) for 12Cr-1Mo-1W-1/4V stainless steel bolting material at 550°C. It was shown that the proposed model based on Altenbach-Gorash-Naumenko creep model for the primary and steady state creep could be applied for the present data. The calculated residual stresses versus time curves were in good agreement with the measured for initial stress level of 273.6MPa at 550°C and for specific reloading time intervals of 24, 72, 240, and 720 hours.


Sign in / Sign up

Export Citation Format

Share Document