Core 1 O-N-acetylgalactosamine (O-GalNAc) glycosylation in the human cell nucleus

2020 ◽  
Vol 401 (9) ◽  
pp. 1041-1051
Author(s):  
Romina B. Cejas ◽  
Yohana C. Garay ◽  
Sofia de la Fuente ◽  
Ricardo D. Lardone ◽  
Fernando J. Irazoqui

AbstractGlycosylation is a very frequent post-translational modification in proteins, and the initiation of O-N-acetylgalactosamine (O-GalNAc) glycosylation has been recently described on relevant nuclear proteins. Here we evaluated the nuclear incorporation of a second sugar residue in the biosynthesis pathway of O-GalNAc glycans to yield the terminal core 1 glycan (C1G, Galβ3GalNAcαSer/Thr). Using confocal microscopy, enzymatic assay, affinity chromatography, and mass spectrometry, we analyzed intact cells, purified nuclei and soluble nucleoplasms to identify the essential factors for C1G biosynthesis in the cell nucleus. The enzyme C1GalT1 responsible for C1G synthesis was detected inside the nucleus, while catalytic activity of C1Gal-transferase was present in nucleoplasm and purified nuclei. In addition, C1G were detected in the nucleus inside of intact cells, and nuclear proteins exposing C1G were also identified. These evidences represent the first demonstration of core 1 O-GalNAc glycosylation of proteins in the human cell nucleus. These findings reveal a novel post-translational modification on nuclear proteins, with relevant repercussion in epigenetic and chemical biology areas.

Author(s):  
Antony J. Burton ◽  
Ghaith M. Hamza ◽  
Andrew X. Zhang ◽  
Tom W. Muir

Protein–protein interactions (PPIs) in the nucleus play key roles in transcriptional regulation and ensure genomic stability. Critical to this are histone-mediated PPI networks, which are further fine-tuned through dynamic post-translational modification. Perturbation to these networks leads to genomic instability and disease, presenting epigenetic proteins as key therapeutic targets. This mini-review will describe progress in mapping the combinatorial histone PTM landscape, and recent chemical biology approaches to map histone interactors. Recent advances in mapping direct interactors of histone PTMs as well as local chromatin interactomes will be highlighted, with a focus on mass-spectrometry based workflows that continue to illuminate histone-mediated PPIs in unprecedented detail.


2020 ◽  
Vol 64 (1) ◽  
pp. 97-110
Author(s):  
Christian Sibbersen ◽  
Mogens Johannsen

Abstract In living systems, nucleophilic amino acid residues are prone to non-enzymatic post-translational modification by electrophiles. α-Dicarbonyl compounds are a special type of electrophiles that can react irreversibly with lysine, arginine, and cysteine residues via complex mechanisms to form post-translational modifications known as advanced glycation end-products (AGEs). Glyoxal, methylglyoxal, and 3-deoxyglucosone are the major endogenous dicarbonyls, with methylglyoxal being the most well-studied. There are several routes that lead to the formation of dicarbonyl compounds, most originating from glucose and glucose metabolism, such as the non-enzymatic decomposition of glycolytic intermediates and fructosyl amines. Although dicarbonyls are removed continuously mainly via the glyoxalase system, several conditions lead to an increase in dicarbonyl concentration and thereby AGE formation. AGEs have been implicated in diabetes and aging-related diseases, and for this reason the elucidation of their structure as well as protein targets is of great interest. Though the dicarbonyls and reactive protein side chains are of relatively simple nature, the structures of the adducts as well as their mechanism of formation are not that trivial. Furthermore, detection of sites of modification can be demanding and current best practices rely on either direct mass spectrometry or various methods of enrichment based on antibodies or click chemistry followed by mass spectrometry. Future research into the structure of these adducts and protein targets of dicarbonyl compounds may improve the understanding of how the mechanisms of diabetes and aging-related physiological damage occur.


Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4699
Author(s):  
Mubashir Mintoo ◽  
Amritangshu Chakravarty ◽  
Ronak Tilvawala

Proteases play a central role in various biochemical pathways catalyzing and regulating key biological events. Proteases catalyze an irreversible post-translational modification called proteolysis by hydrolyzing peptide bonds in proteins. Given the destructive potential of proteolysis, protease activity is tightly regulated. Dysregulation of protease activity has been reported in numerous disease conditions, including cancers, neurodegenerative diseases, inflammatory conditions, cardiovascular diseases, and viral infections. The proteolytic profile of a cell, tissue, or organ is governed by protease activation, activity, and substrate specificity. Thus, identifying protease substrates and proteolytic events under physiological conditions can provide crucial information about how the change in protease regulation can alter the cellular proteolytic landscape. In recent years, mass spectrometry-based techniques called N-terminomics have become instrumental in identifying protease substrates from complex biological mixtures. N-terminomics employs the labeling and enrichment of native and neo-N-termini peptides, generated upon proteolysis followed by mass spectrometry analysis allowing protease substrate profiling directly from biological samples. In this review, we provide a brief overview of N-terminomics techniques, focusing on their strengths, weaknesses, limitations, and providing specific examples where they were successfully employed to identify protease substrates in vivo and under physiological conditions. In addition, we explore the current trends in the protease field and the potential for future developments.


Author(s):  
Lok Man ◽  
William P. Klare ◽  
Ashleigh L. Dale ◽  
Joel A. Cain ◽  
Stuart J. Cordwell

Despite being considered the simplest form of life, bacteria remain enigmatic, particularly in light of pathogenesis and evolving antimicrobial resistance. After three decades of genomics, we remain some way from understanding these organisms, and a substantial proportion of genes remain functionally unknown. Methodological advances, principally mass spectrometry (MS), are paving the way for parallel analysis of the proteome, metabolome and lipidome. Each provides a global, complementary assay, in addition to genomics, and the ability to better comprehend how pathogens respond to changes in their internal (e.g. mutation) and external environments consistent with infection-like conditions. Such responses include accessing necessary nutrients for survival in a hostile environment where co-colonizing bacteria and normal flora are acclimated to the prevailing conditions. Multi-omics can be harnessed across temporal and spatial (sub-cellular) dimensions to understand adaptation at the molecular level. Gene deletion libraries, in conjunction with large-scale approaches and evolving bioinformatics integration, will greatly facilitate next-generation vaccines and antimicrobial interventions by highlighting novel targets and pathogen-specific pathways. MS is also central in phenotypic characterization of surface biomolecules such as lipid A, as well as aiding in the determination of protein interactions and complexes. There is increasing evidence that bacteria are capable of widespread post-translational modification, including phosphorylation, glycosylation and acetylation; with each contributing to virulence. This review focuses on the bacterial genotype to phenotype transition and surveys the recent literature showing how the genome can be validated at the proteome, metabolome and lipidome levels to provide an integrated view of organism response to host conditions.


2018 ◽  
Author(s):  
Yana A. Lyon ◽  
Dylan L. Riggs ◽  
Miranda P. Collier ◽  
Matteo T. Degiacomi ◽  
Justin L.P. Benesch ◽  
...  

AbstractLong-lived proteins are subject to spontaneous degradation and may accumulate a range of modifications over time, including subtle alterations such as isomerization. Recently, tandem-mass spectrometry approaches have enabled the identification and detailed characterization of such peptide isomers, including those differing only in chirality. However, the structural and functional consequences of these perturbations remain largely unexplored. Here we examine the site-specific impact of isomerization of aspartic acid and epimerization of serine in human αA- and αB-crystallin. From a total of 81 sites of modification identified in aged eye lenses, four (αBSer59, αASer162, αBAsp62, αBAsp109) map to crucial oligomeric interfaces. To characterize the effect of isomerization on quaternary assembly, molecular dynamics calculations and native mass spectrometry experiments were performed on recombinant forms of αA- and αB-crystallin that incorporate, or mimic, isomerized residues. In all cases, oligomerization is significantly affected, with epimerization of a single serine residue (αASer162) sufficing to weaken inter-subunit binding dramatically. Furthermore, phosphorylation of αBSer59, known to play an important regulatory role in oligomerization, is severely inhibited by serine epimerization and altered by isomerization of nearby αBAsp62. Similarly, isomerization of αBAsp109 disrupts a vital salt-bridge with αBArg120, a loss previously shown to yield aberrant oligomerization and aggregation in several disease variants. Our results illustrate how isomerization of amino-acid residues, which may seem like a minor structural perturbation, can have profound consequences on protein assembly and activity by disrupting specific hydrogen bonds and salt bridges.Significance StatementProteins play numerous critical roles in our bodies but suffer damage with increasing age. For example, isomerization is a spontaneous post-translational modification that alters the three-dimensional connectivity of an amino acid, yet remains invisible to traditional proteomic experiments. Herein, radical-based fragmentation was used for isomer identification while molecular dynamics and native mass spectrometry were utilized to assess structural consequences. The results demonstrate that isomerization disrupts both oligomeric assembly and phosphorylation in the α-crystallins, which are long-lived proteins in the lens of the eye. The loss of function associated with these modifications is likely connected to age-related diseases such as cataract and neurodegenerative disorders, while the methodologies we present represent a framework for structure-function studies on other isomerized proteins.


2021 ◽  
Author(s):  
Waghela Deeksha ◽  
Suman Abhishek ◽  
Eerappa Rajakumara

Poly(ADP-ribosyl)ation is a post translational modification, predominantly catalyzed by Poly(ADP-ribose) polymerase 1 (PARP1) in response to DNA damage, mediating the DNA repair process to maintain genomic integrity. Single strand (SSB) and double strand (DSB) DNA breaks are bonafide stimulators of PARP1 activity. We identified that, in addition, single strand (ss) DNA also binds and stimulates the PARP1 activity. Poly(ADP-ribose) (PAR) is chemically similar to ssDNA. However, PAR mediated PARP1 regulation remains unexplored. Here, we report ZnF3, BRCT and WGR, hitherto uncharacterized, as PAR-specific reader domains of PARP1. Surprisingly, these domains recognize PARylated protein with a higher affinity compared to PAR, but do not bind to DNA. Conversely, N-terminal domains, ZnF1 and ZnF2, of PARP1 recognize DNA but not PAR. Further competition binding studies suggest that PAR binding, allosterically releases DNA from PARP1. Unexpectedly, PAR showed catalytic stimulation of PARP1 but hampers the DNA dependent stimulation. Altogether, our work discovers dedicated PAR and DNA reader domains of the PARP1, and uncovers a novel mechanism of allosteric stimulation of the catalytic activity of PARP1 but retardation of DNA-dependent activities of PARP1 by its catalytic product PAR.


2017 ◽  
Author(s):  
Gemma Hardman ◽  
Simon Perkins ◽  
Zheng Ruan ◽  
Natarajan Kannan ◽  
Philip Brownridge ◽  
...  

Protein phosphorylation is a ubiquitous post-translational modification (PTM) that regulates all aspects of life. To date, investigation of human cell signalling has focussed on canonical phosphorylation of serine (Ser), threonine (Thr) and tyrosine (Tyr) residues. However, mounting evidence suggests that phosphorylation of histidine also plays a central role in regulating cell biology. Phosphoproteomics workflows rely on acidic conditions for phosphopeptide enrichment, which are incompatible with the analysis of acid-labile phosphorylation such as histidine. Consequently, the extent of non-canonical phosphorylation is likely to be under-estimated. We report an Unbiased Phosphopeptide enrichment strategy based on Strong Anion Exchange (SAX) chromatography (UPAX), which permits enrichment of acid-labile phosphopeptides for characterisation by mass spectrometry. Using this approach, we identify extensive and positional phosphorylation patterns on histidine, arginine, lysine, aspartate and glutamate in human cell extracts, including 310 phosphohistidine and >1000 phospholysine sites of protein modification. Remarkably, the extent of phosphorylation on individual non-canonical residues vastly exceeds that of basal phosphotyrosine. Our study reveals the previously unappreciated diversity of protein phosphorylation in human cells, and opens up avenues for exploring roles of acid-labile phosphorylation in any proteome using mass spectrometry.


Author(s):  
Eva Janisiw ◽  
Marilina Raices ◽  
Fabiola Balmir ◽  
Luis Paulin Paz ◽  
Antoine Baudrimont ◽  
...  

SummaryPoly(ADP-ribosyl)ation is a reversible post-translational modification synthetized by ADP-ribose transferases and removed by poly(ADP-ribose) glycohydrolase (PARG), which plays important roles in DNA damage repair. While well-studied in somatic tissues, much less is known about poly(ADP-ribosyl)ation in the germline, where DNA double-strand breaks are introduced by a regulated program and repaired by crossover recombination to establish a tether between homologous chromosomes. The interaction between the parental chromosomes is facilitated by meiotic specific adaptation of the chromosome axes and cohesins, and reinforced by the synaptonemal complex. Here, we uncover an unexpected role for PARG in promoting the induction of meiotic DNA breaks and their homologous recombination-mediated repair in Caenorhabditis elegans. PARG-1/PARG interacts with both axial and central elements of the synaptonemal complex, REC-8/Rec8 and the MRN/X complex. PARG-1 shapes the recombination landscape and reinforces the tightly regulated control of crossover numbers without requiring its catalytic activity. We unravel roles in regulating meiosis, beyond its enzymatic activity in poly(ADP-ribose) catabolism.


2013 ◽  
Vol 41 (1) ◽  
pp. 432-435 ◽  
Author(s):  
Lina Kaminski ◽  
Shai Naparstek ◽  
Lina Kandiba ◽  
Chen Cohen-Rosenzweig ◽  
Adi Arbiv ◽  
...  

Although performed by members of all three domains of life, the archaeal version of N-glycosylation remains the least understood. Studies on Haloferax volcanii have, however, begun to correct this situation. A combination of bioinformatics, molecular biology, biochemical and mass spectrometry approaches have served to delineate the Agl pathway responsible for N-glycosylation of the S-layer glycoprotein, a reporter of this post-translational modification in Hfx. volcanii. More recently, differential N-glycosylation of the S-layer glycoprotein as a function of environmental salinity was demonstrated, showing that this post-translational modification serves an adaptive role in Hfx. volcanii. Furthermore, manipulation of the Agl pathway, together with the capability of Hfx. volcanii to N-glycosylate non-native proteins, forms the basis for establishing this species as a glyco-engineering platform. In the present review, these and other recent findings are addressed.


Sign in / Sign up

Export Citation Format

Share Document