Effect of Heat Treatment on Microstructure and Mechanical Properties in ZK60 Alloy Sheet

2007 ◽  
Vol 567-568 ◽  
pp. 361-364 ◽  
Author(s):  
Suk Bong Kang ◽  
Jae Hyung Cho ◽  
Hyoung Wook Kim ◽  
Y.M Jin

The sheet of ZK60 alloy with a thickness of 1mm was prepared from a casting ingot followed by homogenization and warm-rolling. Variations in microstructure and mechanical properties of ZK60 alloy sheets were investigated during T6 treatment. Especially artificial aging after solution heat treatment affected both precipitates distribution and mechanical properties with aging treatment. Variations of mechanical properties were related to precipitates, i.e. rod-shaped ( 1 β ′ ) or disc shaped ( 2 β ′ ) particles. Around the peak of hardness values, regularly distributed rod-shaped ( 1 β ′ ) precipitates were found. The rod-shaped ( 1 β ′ ) precipitates were oriented with a growth direction of [0001]. When over-aged, rod-shaped ( 1 β ′ ) precipitates were expected to decrease and the density of disc-shaped ( 2 β ′ ) precipitates to change. The rod-shaped ( 1 β ′ ) precipitates mainly consist of {Mg, Zn}, while disc-shaped ( 2 β ′ ) precipitates, {Mg, Zn, Zr} or {Mg, Zn}. In this study the optimum T6 treatment was determined as solution treatment at 430 °C for 6 hours and subsequently aging treatment at 175 °C for 18 hours. At this T6 condition the tensile strength, yield strength and elongation are 321MPa, 280MPa and 16%, respectively.

2005 ◽  
Vol 488-489 ◽  
pp. 151-154
Author(s):  
Weichao Zheng ◽  
Xiao Li Sun ◽  
Peijie Li ◽  
Daben Zeng ◽  
L.B. Ber

Effect of heat treatment on the microstructure and mechanical properties of high purity MA2-1(Mg-5wt.%Al-1wt.%Zn-0.4wt.%Mn) alloy sheet were investigated. X-ray diffraction analysis indicated that the microstructure of high purity MA2-1 alloy sheet annealed consisted of α-Mg solid solution, β (Mg17Al12) phase and Al-Mn phases such as Al6Mn and Al10Mn3. β phase dissolved into α-Mg solid solution during the solution treatment and formed supersaturated α-Mg solid solution. After aging at the temperatures of 423 K, 473 K and 523 K for 12 hours, β phase precipitated from the supersaturated α-Mg solid solution. Optical microscope observation found that the grain size of the MA2-1 alloy sheet became larger after heat treatment. As a result, the mechanical properties of the MA2-1 alloy sheet such as the tensile strength and yield strength declined after the heat treatment.


Metals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 268
Author(s):  
Ji-Hoon Jang ◽  
Dong-Geun Lee

The cytotoxic tissue reactions of alloying elements (Al, V) of Ti-6Al-4V have been reported, whereas the Ti-39Nb-6Zr (TNZ40) alloy developed by adding β-phase stabilizing elements is known to have no cytotoxicity and exhibits excellent biocompatibility. In addition, there is a slight modulus difference between the TNZ40 alloy and human bones as the elastic modulus of the TNZ40 alloy is very low. This can inhibit detrimental effects such as osteoblast loss due to a stress-shielding effect. In this study, various Si contents were added and heat treatment under various conditions was performed to control the microstructure and mechanical properties of the TNZ40 alloy. In the β-type titanium alloy, the ω phase is commonly observed by quenching from the solution-treatment or aging-treatment temperature. These ω precipitates can typically increase the elastic modulus, hardness, and embrittlement of the β-type titanium alloy, which are important to control this phase. The correlation between Si content and precipitation and the effects of solution treatment and aging condition on the mechanical properties such as tensile strength, and hardness, were analyzed.


2007 ◽  
Vol 558-559 ◽  
pp. 159-164 ◽  
Author(s):  
Jae Hyung Cho ◽  
Y.M Jin ◽  
Hyoung Wook Kim ◽  
Suk Bong Kang

Variations in microstructure and mechanical properties of ZK60 alloy sheets were investigated with aging time. ZK60 alloy sheets with a thickness of 1mm were prepared from a casting ingot followed by homogenization and warm-rolling. Artificial aging process after solution heat treatment (T6) affected both hardness variations and precipitates distributions with aging time. Hardness variations were related to precipitates, i.e. rod-shaped ( 1 β ′ ) or disc shaped ( 2 β ′ ) particles. Rod-shaped ( 1 β ′ ) precipitates mainly consist of Mg and Zn without Zr.


2005 ◽  
Vol 488-489 ◽  
pp. 257-260 ◽  
Author(s):  
Jianguo Peng ◽  
Qu Dong Wang ◽  
Man Ping Liu ◽  
Yongjun Chen ◽  
Wen Jiang Ding ◽  
...  

Effects of solution and aging treatment on microstructure and mechanical properties of rolled AM50+xCa alloys(x=0, 1, 2 wt. %) were studied. The results indicated that, with increasing solution time i, the secondary phase Mg17Al12 was dissolved into the Mg matrix and Al2Ca became thinner and shorter, then gradually broken and spheroidized.With an increase of aging time, Mg17Al12 precipitated from the Mg matrix in the form of particles and Al2Ca changed a little. After solution treatment, hardness and tensile properties of the alloy’s decreased. After the aging treatment, the alloy’s hardness increased first and decreased later while the tensile properties increased little. The solution and aging treatment can increase the ductility of AM50 and AM50+1Ca alloys. For AM50+2Ca alloy, the ductility increased after solid solution treatment and decreased after aging treatment.


2016 ◽  
Vol 35 (1) ◽  
pp. 1-7 ◽  
Author(s):  
Zhiyuan Liang ◽  
Wanhua Sha ◽  
Qinxin Zhao ◽  
Chongbin Wang ◽  
Jianyong Wang ◽  
...  

AbstractThe effect of aging heat treatment on the microstructure and mechanical properties of 10Cr20Ni25Mo1.5NbN austenitic steel was investigated in this article. The microstructure was characterized by scanning electron microscopy, energy dispersive spectrometry and transmission electron microscopy. Results show that the microstructure of 10Cr20Ni25Mo1.5NbN austenitic is composed of austenite. This steel was strengthened by precipitates of secondary phases that were mainly M23C6 carbides and NbCrN nitrides. As aging treatment time increased, the tensile strength first rose (0–3,000 h) and then fell (3,000–5,000 h) due to the decrease of high density of dislocations. The impact absorbed energy decreased sharply, causing the sulfides to precipitate at the grain boundary. Therefore, the content of sulfur should be strictly controlled in the steelmaking process.


Materials ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4223 ◽  
Author(s):  
Xi Zhao ◽  
Shuchang Li ◽  
Fafa Yan ◽  
Zhimin Zhang ◽  
Yaojin Wu

Microstructure evolution and mechanical properties of AZ80 Mg alloy during annular channel angular extrusion (350 °C) and heat treatment with varying parameters were investigated, respectively. The results showed that dynamic recrystallization of Mg grains was developed and the dendritic eutectic β-Mg17Al12 phases formed during the solidification were broken into small β-phase particles after hot extrusion. Moreover, a weak texture with two dominant peaks formed owing to the significant grain refinement and the enhanced activation of pyramidal <c + a> slip at relative high temperature. The tension tests showed that both the yield strength and ultimate tensile strength of the extruded alloy were dramatically improved owing to the joint strengthening effect of fine grain and β-phase particles as compared with the homogenized sample. The solution treatment achieved the good plasticity of the alloy resulting from the dissolution of β-phases and the development of more equiaxed grains, while the direct-aging process led to poor alloy elongation as a result of residual eutectic β-phases. After solution and aging treatment, simultaneous bonding strength and plasticity of the alloy were achieved, as a consequence of dissolution of coarse eutectic β-phases and heterogeneous precipitation of a large quantity of newly formed β-phases with both the morphologies of continuous and discontinuous precipitates.


2014 ◽  
Vol 881-883 ◽  
pp. 1317-1329 ◽  
Author(s):  
Mahmoud M. Tash ◽  
Saleh Alkahtani

The present study was conducted to investigate the effect of heat treatment on the aging and mechanical behavior of Al-Cu-Mg-Li-Zr , Al-Mg-Si and and Al-Mg-Zn alloys (8090 , 6082 and 7075). The effect of cold work after solution treatment, aging parameters (time and temperature) on the microstructure and mechanical properties were studied. Attempts are made to determine the combined effect of cold work and aging treatment on the hardness, UTS and microstructure for these alloys. By study the impact of different heat treatments for Al-Mg-Si alloys (6082), Al-Cu-Mg-Li-Zr (8090) and Al-Mg-Zn (7075) aluminum alloys on the hardness and mechanical properties, it is possible to determine conditions necessary to achieve better mechanical properties and the maximum levels of hardness and values corresponding to those considered suitable for commercial applications of these alloys.Design of Experiment (DOE) method in Minitab is used to measure the impact of various factors and how they relate. Correlation between the hardness and different metallurgical factors for these alloys at both quantitative and qualitative are investigated and analysed. A statistical design of experiments (DOE) approach using fractional factorial design was applied to determine the influence of controlling variables of cold work and heat treatment parameters and any interactions between them on the hardness of the above alloys. A mathematical model is developed to relate the alloy hardness with the different metallurgical parameters to acquire an understanding of the effects of these variables and their interactions on the hardness of wrought Al-alloys. It is noticed that cold work, following solution treatment, accelerates the precipitation rate leading to a rise in strength


2007 ◽  
Vol 353-358 ◽  
pp. 718-721
Author(s):  
Ding Fei Zhang ◽  
Rong Shen Liu ◽  
Jian Peng ◽  
Wei Yuang ◽  
Hong Ju Zhang

With different heat treatment, the microstructure and mechanical properties of ZK60 magnesium alloy were investigated. It can be concluded that heat treatment has great effect on mechanical properties of ZK60. With artificial aging after extruding, the precipitation of the second phase from the supersaturated solid solution significantly improved mechanical properties. It can greatly increase yield strength of ZK60 alloy, while the tensile strength has little change. For the combination of solid solution strengthening and age hardening, two opposite factors must be considered. On one hand, the solid solution strengthening and the later precipitation strengthening is good for alloy’s strength; on the other hand, the properties decrease as the grains grew under high temperature for a long time during solution heating.


2015 ◽  
Vol 60 (3) ◽  
pp. 1813-1818
Author(s):  
J. Piątkowski ◽  
T. Matuła

Abstract In the paper results of the microstructure and mechanical properties (HB, Rm and R0,2) of AlSi17Cu5 alloy, subjected by solution heat treatment (500ºC/6h/woda) and aging (200ºC/16h/piec) are presented. In next step the alloy was modified and heated significantly above the Tliq temperature (separately and together). It was found that the increase in the strength properties of the tested alloy after heat treatment compared to alloys without solution heat treatment and aging was due to precipitation hardening. The applied aging treatment of ingots (preceded by solution heat treatment), causes not only increase in concentration in α(Al) solid solution, but also a favorable change of the primary Si crystals morphology. During stereological measurements significant size reduction and change in the morphology of hypereutectic silicon crystals ware found. This effects can be further enhanced by overheating the alloy to a temperature of 920ºC and rapid cooling before casting of the alloy.


Sign in / Sign up

Export Citation Format

Share Document