Characterization and Catalytic Reactivity of LaNi1-xMgxO3-δ Perovskite Oxides in Reforming of Methane with CO2 and O2

Author(s):  
Alireza Jahangiri ◽  
Majid Saidi ◽  
Abolfazl Mohammadi ◽  
Mehdi Sedighi

Abstract A series of Mg doped LaNiO3 nano particles by solids denoted as LaNi1-xMgxO3-δ (x = 0, 0.1, 0.2, 0.4, 0.6, 0.8 and 1) were prepared by the modified citrate sol-gel method and investigated as catalysts for combine reforming of methane (CRM).The resulting oxides were examined by using XRD, BET, ICP, SEM, EDS, TEM, TPR and TGA techniques, under the condition of as-synthesized and used samples. The results showed that highly homogeneous and crystalline oxides with particle sizes in the range of nanometers were obtained through this synthesis method. The XRD patterns of the prepared LaNi1-xMgxO3-δsolids confirmed with increasing Mg amount not only perovskite structure could not form correctly but also the spinel (La2NiO4) and oxide phases (MgO and NiO) are produced on the sample surface. Also according to BET results, the presence of these oxide phases lead to the increase in the surface area of samples .Although, increasing in surface area had not a significant effect in results of activity tests. TPR analysis revealed that the reduction of the prepared samples became more difficult by increasing the degree of substitution (x). The effects of the partial substitution of Ni by Mg and reaction temperatures (600–800 °C) were investigated in CRM process, after reduction of the samples under hydrogen. Although, all catalysts, except LaMgO3, were found to be highly active toward the syngas production during the CRM process but substitution of Ni by Mg could not improve the catalytic activity of the LaNi1-xMgxO3-δ in this process. The catalytic activity in the steady state was found to decrease in the following order: $${\text{LaNi}}{{\text{O}}_{\text{3}}} \gt {\text{LaN}}{{\text{i}}_{{\text{0}}{\text{.4}}}}{\text{M}}{{\text{g}}_{{\text{0}}{\text{.6}}}}{{\text{O}}_{{\text{3 - }}\delta }} \gt {\text{LaN}}{{\text{i}}_{{\text{0}}{\text{.6}}}}{\text{M}}{{\text{g}}_{{\text{0}}{\text{.4}}}}{{\text{O}}_{{\text{3 - }}\delta }} \gt {\text{LaN}}{{\text{i}}_{{\text{0}}{\text{.9}}}}{\text{M}}{{\text{g}}_{{\text{0}}{\text{.1}}}}{{\text{O}}_{{\text{3 - }}\delta }} \gt {\text{LaN}}{{\text{i}}_{{\text{0}}{\text{.8}}}}{\text{M}}{{\text{g}}_{{\text{0}}{\text{.2}}}}{{\text{O}}_{{\text{3 - }}\delta }} \gt {\text{LaMgO3 - }}\delta$$ Of course, according to the TPR and TGA results, the stability of the samples increased and the coke deposits on the catalyst surface decreased with increasing of x, respectively.

2014 ◽  
Vol 12 (1) ◽  
pp. 25-34 ◽  
Author(s):  
Alireza Jahangiri ◽  
Hamidreza Aghabozorg ◽  
Hassan Pahlavanzadeh ◽  
Jafar Towfighi

Abstract The LaNi1–xCoxO3 (x = 0, 0.2, 0.4, 0.6, 0.8 and 1) perovskites were prepared by the citrate sol–gel method. The prepared compounds were characterized by using XRD, BET, ICP, SEM, EDS, TEM, TPR and TGA techniques, under the condition of as-synthesized and used samples. The results showed that the highly homogeneous and pure solids with particle sizes in the range of nanometers were obtained through this synthesis method. The XRD patterns of fresh catalysts indicated the formation of well-crystallized perovskite structure with LaNiO3 and LaCoO3 as the main phases present on the solids depending on the amount of Co-substitution. TPR analysis revealed that the reduction of the solids was more difficult when increasing the degree of substitution (x). The effects of the partial substitution of Ni by Co and reaction temperatures at atmospheric pressure were investigated in the combined reforming of methane with CO2 and O2 (CRM), after reduction of the samples under hydrogen. LaNiO3 exhibited high activity and selectivity without coke formation between all of the studied perovskites. For LaNi1–xCoxO3 perovskites, it was observed a trend to decrease the catalytic activity with increasing the Co-doping level.


RSC Advances ◽  
2017 ◽  
Vol 7 (85) ◽  
pp. 54053-54062 ◽  
Author(s):  
Inderjeet Singh ◽  
Balaji Birajdar

The superior photo-catalytic activity of mesoporous Na doped TiO2 attributed to the combined effect of electron–hole recombination rate, increased surface area and enhanced crystallinity.


2017 ◽  
Vol 7 (15) ◽  
pp. 3399-3407 ◽  
Author(s):  
Krishna Vankudoth ◽  
Naresh Gutta ◽  
Vijay Kumar Velisoju ◽  
Suresh Mutyala ◽  
Hari Padmasri Aytam ◽  
...  

A direct correlation between Cu metal surface area and surface basic sites of CuCr2O4 and the 2,6-dimethylpyrazine rate is established.


2010 ◽  
Vol 96 ◽  
pp. 135-139
Author(s):  
Cai Rong Gong ◽  
Hai Feng Chen ◽  
Guo Liang Fan ◽  
Chong Lin Song ◽  
Gang Lv

A series of complex oxide Cu1-xKxFe2O4 fibers have been prepared via a sol-gel process related electron-spinning procedure, in which x is among 0, 0.05, 0.1 and 0.2 corresponding to the quantity of Cu2+ partial substitution by K+. The average diameter of the fiber was 500 nm. The catalytic activity of the catalysts in removal of NOx and carbon black from diesel exhaust gases were examined in detail using temperature-programmed reaction technique. The results show that after partial substitution of Cu2+ with K+, the catalytic activities have been improved. Cu0.95K0.05Fe2O4 as an optimal catalyst can significantly decrease the ignition temperature (Tig) of the PM, and has high catalytic activity on the removal of NOx.


Energies ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2928
Author(s):  
Naushad Ahmad ◽  
Fahad Alharthi ◽  
Manawwer Alam ◽  
Rizwan Wahab ◽  
Salim Manoharadas ◽  
...  

The development of a transition-metal-based catalyst with concomitant high activity and stability due to its distinguishing characteristics, yielding an abundance of active sites, is considered to be the bottleneck for the dry reforming of methane (DRM). This work presents the catalytic activity and durability of SrNiO3 and CeNiO3 perovskites for syngas production via DRM. CeNiO3 exhibits a higher specific surface area, pore volume, number of reducible species, and nickel dispersion when compared to SrNiO3. The catalytic activity results demonstrate higher CH4 (54.3%) and CO2 (64.8%) conversions for CeNiO3, compared to 22% (CH4 conversion) and 34.7% (CO2 conversion) for SrNiO3. The decrease in catalytic activity after replacing cerium with strontium is attributed to a decrease in specific surface area and pore volume, and nickel active sites covered with strontium carbonate. The stability results reveal the deactivation of both the catalysts (SrNiO3 and CeNiO3) but SrNiO3 showed more deactivation than CeNiO3, as demonstrated by deactivation factors. The catalyst deactivation is mainly attributed to carbon deposition and these findings are verified by characterizing the spent catalysts.


2019 ◽  
Vol 62 (1-2) ◽  
pp. 73-88
Author(s):  
M.D. Smolikov ◽  
V.A. Shkurenok ◽  
S.S. Yablokova ◽  
D.I. Kir’yanov ◽  
A.S. Belyi

The paraffin hydrocarbons isomerization is one of the most important processes in the oil refining industry, aimed at obtaining high-octane environmental components of modern gasolines. The actual direction in isomerization is the processing of the fraction, containing C7-alkanes. The review is devoted to modern concepts of the active rface formation of tungstate-containing zirconia, which is a highly active catalytic system for the isomerization of heptanes. The review deals with the influence of synthesis method of tungstate-containing zirconia, it’s chemical composition, phase structure and acid properties on the formation of the active surface of WO3/ZrO2 systems and their catalytic activity. The role of platinum in the catalytic systems WO3/ZrO2 for C7-alkanes isomerization is considered.


2017 ◽  
Vol 56 (2) ◽  
Author(s):  
Juan Manuel Hernández-Enríquez ◽  
Rebeca Silva-Rodrigo ◽  
Ricardo García-Alamilla ◽  
Luz Arcelia García-Serrano ◽  
Brent Edward Handy ◽  
...  

Environmentally friendly solid-acid catalysts CeO<sub>2</sub>/ZrO<sub>2</sub>-SO<sub>4</sub><sup>2-</sup> were prepared by the sol gel method varying CeO<sub>2</sub> content (10, 20 and 30 wt%) and using sulfation <em>in situ</em>, maintaining the sulfate ions amount present in the materials at 20 wt%. ZrO<sub>2</sub> and ZrO<sub>2-</sub>SO<sub>4</sub><sup>2-</sup> were also prepared for comparison proposes using the same synthesis method. The materials were characterized by X-ray diffraction, nitrogen physisorption, potentiometric titration with <em>n</em>-butylamine, decomposition of 2-propanol and <em>n</em>-pentane isomerization. The specific surface area of ZrO<sub>2-</sub>SO<sub>4</sub><sup>2-</sup> was high (160 m<sup>2</sup>/g) compared with the unmodified ZrO<sub>2</sub> (80 m<sup>2</sup>/g), however this area decreased with increasing the CeO<sub>2</sub> content (37-100 m<sup>2</sup>/g). There was no significant effect of CeO<sub>2</sub> on the tetragonal structure of ZrO<sub>2-</sub>SO<sub>4</sub><sup>2-</sup>. The variation of acid sites amount runs parallel to the change of specific surface area. The acid sites amount decreased with increasing cerium oxide content. The decomposition of 2-propanol results fundamentally in the formation of dehydration products such as propylene and diisopropyl ether, both involving acid sites. In addition, a good performance during the <em>n</em>-pentane isomerization was observed for these materials. The selectivity towards isopentane reaches 84% when the Pt/CeO<sub>2</sub>/ZrO<sub>2-</sub>SO<sub>4</sub><sup>2-</sup> catalyst with the highest CeO<sub>2</sub> content was used.


2015 ◽  
Vol 3 (20) ◽  
pp. 11048-11056 ◽  
Author(s):  
Yifei Sun ◽  
Jianhui Li ◽  
Yimin Zeng ◽  
Babak Shalchi Amirkhiz ◽  
Mengni Wang ◽  
...  

Introduction of A-site deficiency on Ni-doped LaSrCrO3 anodes helps form highly mobile oxygen vacancies and remarkably enhances Ni nanoparticle reducibility, and significantly increases electronic conductivity and catalytic activity.


2002 ◽  
Vol 304 (1-3) ◽  
pp. 101-108 ◽  
Author(s):  
Juliana C. Biazzotto ◽  
Ednalva A. Vidoto ◽  
Otaciro R. Nascimento ◽  
Yassuko Iamamoto ◽  
Osvaldo A. Serra

2011 ◽  
Vol 691 ◽  
pp. 92-98 ◽  
Author(s):  
R. Carrera ◽  
A.L. Vázquez ◽  
S. Castillo ◽  
E.M. Arce Estrada

Nowadays, nanostructured semiconductor materials offer promising opportunities for a new generation of materials such as TiO2nanoparticles with improved properties for their application in the environmental catalysis field. It is well known that the phocatalytic activity of the TiO2nanoparticles is strongly dependent on the surface area, crystal size, phase composition and synthesis method. Thus, the preparation conditions clearly affect the photocatalytic activity of the TiO2nanoparticles. This work deals with the study of the structure of TiO2nanoparticles that were synthesized by the sol-gel method (using isopropanol as solvent), and calcined at 200 and 500°C. The obtained samples were characterized by the XRD-Rietveld refinement, BET and TEM techniques; and tested in the photodecomposition of acetaldehyde. The evaluations were carried out at room temperature by using CH3CHO (300 ppmv), O2(2.0 %) in helium balance in a quartz glass photoreactor (gas phase) with a 365-UV light lamp. According to the results, the sample that presented the highest activity in the photocatalytic oxidation of acetaldehyde (96.4%) was the one annealed at 200 °C. This sample showed the following proportion of phases: anatase (62.88%) with a tetragonal structure (a=0.3790926, b=0.3790926, c=0.9495732) nm; and b) brookite (37.12%) with an orthorhombic structure (a=0.9167624, b=0.5416461, c=0.5210546) nm. The surface area was 189 m2/g and the average crystal size was 7.03 nm. From the results, it can be seen that this material showed high activity in the photocatalytic degradation of acetaldehyde because of: the presence of a mixture of the anatase (higher proportion) and brookite phases, nanometric crystal size and high surface area obtained in this TiO2material. According to the aforementioned, this material can be considered as a good option for the decomposition of acetaldehyde and other volatile organic compounds (VOCs) in confined spaces.


Sign in / Sign up

Export Citation Format

Share Document