Enhancement of the performance of a static mixer by combining the converging/diverging tube shapes and the baffling techniques

Author(s):  
Noureddine Kaid ◽  
Houari Ameur

AbstractThe performance of a newly designed static mixer is explored in this paper by numerical simulations. It concerns a converging/diverging circular tube equipped with opposing and staggered baffles. This new design of static mixer presents a cost-effective, easy-to-design, easy-to-maintain choice, with a minimum pressure drop and a good mixing index at low Reynolds numbers (from 60 to 700), to the currently used static mixers. The investigation was carried out numerically for different baffle clearances (cl/D = 0.3, 0.5, 0.7 and 1.0, respectively) and inclination angles (α = 0°, 30° and 45°, respectively), different ratios of inlet diameter-to-outlet diameter (Dd = d/D = 0.6, 0.8, 1.0, 1.2 and 1.4, respectively) and different Reynolds number values. The obtained results revealed that the diverging tube favors the mixing index while reducing the pressure drop. For a dimensionless baffle clearance (cl/D) of 0.5 and Re = 700, the mixing index has been increased from 0.78 for a simple tube (d/D = 1) having vertical baffles (α = 0°) until 0.95 for a diverging tube at the ratio (d/D) of 1.4 with the same vertical baffles (α = 0°). The increase in the ratio d/D has also yielded a decrease in pressure losses. Compared to the simple static mixer without baffles and having the same inlet as outlet sections, the maximum enhancement in mixing index was about 315.84% when d/D = 1.4 and Cl/D = 0.3 and α = 0°. However, a reduction in pressure drop by about 92% may be obtained when α = 30° with only a reduction in mixing index by 14% (compared to α = 0°).

2013 ◽  
Vol 845 ◽  
pp. 31-35 ◽  
Author(s):  
Bukhari Manshoor ◽  
Izzuddin Zaman ◽  
Mohd Zamani Ngali ◽  
Amir Khalid

This paper examines the performance of a new type of static mixer known as Fractal Plate Static Mixers. A simulation study was performed to investigate the pressure drop across different numbers of mixing elements (1, 2 and 3). The effectiveness of mixing was assessed by analyzing the coefficient of variation (CoV) of the flow within the range of 0 to 1. The value of CoV that approaching 1 is categorized as a total segregation, while close to 0 indicates a good mixing. The Reynolds number of the study was chosen between 500 and 2000 based on the unobstructed pipe diameter. Results showed that the mixing elements in the flow stream promote a non-laminar, turbulent-like flow which substantially enhances the mixing. By adding more mixing element, it was found that the flow mixing was enhanced in particular at lower Reynolds numbers. In spite of this advantage, the pressure drop was found increased in proportional to the number of mixing elements. This work presents an initial stage of ongoing work to develop a new type of static mixers that based on perforated plate.


Author(s):  
R. F. Mudde ◽  
C. Van Pijpen ◽  
R. Beugels

The PRIMIX helical static mixer has been investigated using numerical simulations. The flow is in the laminar regime (Re = 1 to 1000). The simulations concentrate on the pressure drop and on the use of particle tracking for mixing studies. For the pressure drop, experimental validation is provided. It is found that the pressure drop can be simulated with high accuracy for Re < 350. For higher Re-values no grid independent solution could be obtained and the experimental results no longer agree with those of the simulations. The simulated pressure drop results scaled to the empty pipe pressure drop, can be well summarized as K = 4.99 + Re/31.4. Using Particle Tracking it has been possible to reproduce literature data. However, it has been shown that the obtained results are rather sensitive to the choice of the time step. This limits the direct use of particle tracking techniques for studying the mixing of static mixers in the laminar regime.


2013 ◽  
Vol 291-294 ◽  
pp. 791-794
Author(s):  
Yan Liu ◽  
Shao Feng Zhang ◽  
Jiang Tao Wang

In order to obtain the pressure drop of the horizontal liquid-solid circulation fluidization bed with Kenics static mixers, experiments were carried out in four Kenics static mixers with different aspect ratio of mixing element(AR) over a range of 30000 to 51000 to get pressure drop data. Dimension analysis revealed that the pressure drop characteristic of the Kenics static mixer can be described by three dimensionless parameters, such as the friction factor, Reynolds number, and aspect ratio of mixing element. According to the experiment data, a new dimensionless pressure drop correlation was developed. The results indicate that the value of Cf becomes constant and has no correlation with the value of Re in fixed AR. The value of Cf was increased with the increase of AR.


2014 ◽  
Vol 541-542 ◽  
pp. 836-840 ◽  
Author(s):  
Mat Loddin Mohd Zamadi ◽  
Amir Khalid ◽  
Bukhari Manshoor

The applications of the static mixers are widely applied in many industries to obtain the desired type of mixing. In this context, to perform the mixing process should have two different fluids that also have different properties which will combines it in a single equipment to make an another fluid. The main objective of this research study is to propose a new approach of fractal concept (circle grid perforated plate) for internal rapid mixing by determining the coefficient of variation (COV). This study was implemented by fully numerical simulations. The simulations of mixing fluid were carried out with the help of commercial computational fluid dynamic (CFD) package ANSYS CFX 14.0 software. The simulation was done primarily in cylindrical pipe with insertions of circle grid perforated plate with porosity of 50%. Three levels of laminar flow have been chosen to result in Reynolds numbers (Re) equal to 100, 200 and 400. The effectiveness of circle grid perforated plate static mixer has been evaluated by comparing the homogeneity level of mixing fluids to the Kenics static mixer that readily available in industries applications. Based on the research findings, the COV value for circle grid perforated plate with 50% porosity at Re 100 was 0.0744 which is out of the range while Reynolds number at 200 and 400 were 0.0483 and 0.0247 respectively which are in the range in term of reasonable target of mixing homogeneity. The values of COV between 0.01 and 0.05 are the reasonable target for many applications. In term of manufacturing cost and energy loss due to static mixer, definitely this new approach of 50% porosity circle grid perforated plate is better design compared to the Kenics static mixer because of lower number of inserts and simpler design of static mixer to produce.


1989 ◽  
Vol 111 (3) ◽  
pp. 212-221 ◽  
Author(s):  
S. C. van Dreumel ◽  
G. D. C. Kuiken

Velocity profiles and the pressure drop across two mild (62 percent) coronary stenoses in series have been investigated numerically and experimentally in a perspex-tube model. The mean flow rate was varied to correspond to a Reynolds number range of 50–400. The pressure drop across two identical (62 percent) stenoses show that for low Reynolds numbers the total effect of two stenoses equals that of two single stenoses. A reduction of 10 percent is found for the higher Reynolds numbers investigated. Numerical and experimental results obtained for the velocity profiles agree very well. The effect of varying the converging angle of a single mild (62 percent) coronary stenosis on the fluid flow has been determined numerically using a finite element method. Pressure-flow relation, especially with respect to relative short stenoses, is discussed.


Author(s):  
Ramin K. Rahmani ◽  
Theo G. Keith ◽  
Anahita Ayasoufi

Static mixers are increasingly being used to perform a variety of mixing tasks in industries, ranging from simple blending to complex multi-phase reaction systems. Use of static mixers to process non-Newtonian fluids is quite common. Data on the pressure drop of non-Newtonian fluids in static mixers and the degree of mixing of materials through the mixer are very useful in the design and engineering application of these tools. This paper extends a previous study by the authors on an industrial helical static mixer and illustrates how static mixing processes of single-phase viscous liquids can be simulated numerically. A further aim is to provide an improved understanding of the flow pattern of non-Newtonian single-phase liquids through the mixer. A three-dimensional finite volume simulation is used to study the performance of the mixer. The non-Newtonian fluid is modeled by the Carreau law model for the shear stress. The effects of the Reynolds number of the flow and also properties of non-Newtonian fluids on the static mixer performance have been studied. The flow velocities, pressure drops, etc. are calculated for various flow rates. The computed pressure drop is in good agreement with existing experimental data. A comparison of the mixer performance for both Newtonian and non-Newtonian fluids is presented. It is shown that for low Reynolds number flows, the fluid type is less effective on the degree of mixing, while as flow Reynolds number increases and the viscosity decreases, it manifests more influence on the downstream mixing. It is also shown that the fluid type has a major impact on the pressure drop across the mixer.


2020 ◽  
Vol 142 (10) ◽  
Author(s):  
Qiang Liu ◽  
Shan Zhong ◽  
Lin Li

Abstract In this paper, the effects of an array of herringbone riblets with different riblet geometry (height and spacing) and start locations on the pressure losses in a cascade of diffuser blades are investigated over a range of low Reynolds numbers (0.50 × 105–1.00 × 105). The herringbone riblets with a given geometry are found to produce a profound modification to the wake structure above certain critical Reynolds numbers. It is also found that within the range of parameters tested an increase in riblet height and riblet spacing results in an onset of significant control effect at a lower Reynolds number, which is accompanied by a slight reduction in zone-averaged loss coefficient and flow turning angle. An upstream shift of the start position of the riblet array along the blades enables the riblets to become effective at a lower Reynolds number at the expense of a reduced loss reduction and flow turning angle. A semi-empirical relationship between the ratio of riblet height to local baseline boundary layer displacement thickness and the critical Reynolds number is established using the present experimental data. A preliminary methodology for designing the herringbone riblets to ensure an effective control of 2D flow separations around the mid-span of diffuser blades over a specified range of Reynolds numbers is also proposed.


2004 ◽  
Vol 10 (6) ◽  
pp. 459-468 ◽  
Author(s):  
D. V. Ratna Rao ◽  
Chakka Sarat Babu ◽  
S. V. Prabhu

An experimental investigation is carried out to study the effect of several turn treatments like single guide vane (short and long) and multiple guide vanes on the pressure drop distribution in a square cross-sectioned smooth channel with a sharp 180° bend. The sharp 180° turn is obtained by dividing a rectangular passage into two square channels using a divider wall with a rounded tip at the location where the flow negotiates the turn. The study is carried out for a divider wall thickness to hydraulic diameter(W/D)of 0.2 for Reynolds numbers of 13,500 and 17,000. The pressure drop distribution normalized with the mainstream fluid dynamic pressure head is presented for the outer surfaces. The results indicate that the shape and position of the guide vanes significantly affect the pressure losses associated with coolant flows through a sharp 180° bend. Properly shaped 180° vanes located in the center of the bend decrease the overall pressure drop by as much as 40–45% compared to the no guide vane within the bend.


Author(s):  
Ramin K. Rahmani ◽  
Theo G. Keith ◽  
Anahita Ayasoufi

Viscous liquids have to be homogenized in continuous operations in many branches of processing industries; and therefore, fluid mixing plays a critical role in the success or failure of many industrial processes. Consequences of improper mixing include non-reproducible processing conditions and lowered product quality, resulting in the need for more elaborate downstream processes and increased costs. The range of practical flow Reynolds numbers for KOMAX static mixers in industry is usually from moderate values (Re ≈ 0) to very large values (e.g. Re ≈ 5,000,000). However, most of industrial applicants have a very small flow to moderate Reynolds numbers (e.g. Re ≈ 5,000). This paper presents an improved understanding of the turbulent flow pattern for single-phase liquids through the mixer. Large-Eddy Simulation (LES) model is applied to the flow in a KOMAX static mixer to calculate the flow velocities, pressure drops, etc. Using a variety of predictive tools, the mixing results are obtained.


2005 ◽  
Vol 128 (3) ◽  
pp. 467-480 ◽  
Author(s):  
Ramin K. Rahmani ◽  
Theo G. Keith ◽  
Anahita Ayasoufi

Static mixers are increasingly being used to perform a variety of mixing tasks in industries, ranging from simple blending to complex multiphase reaction systems. Use of static mixers to process non-Newtonian fluids is quite common. Data on the pressure drop of non-Newtonian fluids in static mixers and the degree of mixing of materials through the mixer are very useful in the design and engineering application of these tools. This paper extends a previous study by the authors on an industrial helical static mixer and illustrates how static mixing processes of single-phase viscous liquids can be simulated numerically. A further aim is to provide an improved understanding of the flow pattern of pseudoplastic liquids through the mixer. A three-dimensional finite volume simulation is used to study the performance of the mixer. The flow velocities, pressure drops, etc., are calculated for various flow rates, using the Carreau and the power law models for non-Newtonian fluids. The numerical predictions by these two models are compared to existing experimental data. Also, a comparison of the mixer performance for both Newtonian and pseudoplastic fluids is presented. The effects of the Reynolds number of the flow and also properties of pseudoplastic fluids on the static mixer performance have been studied. It is shown that for the materials studied here, the fluid type is not effective on the degree of mixing. It is also shown that the fluid type has a major impact on the pressure drop across the mixer.


Sign in / Sign up

Export Citation Format

Share Document