The electrochemical degradation of the metronidazole (MNZ) antibiotic using electrochemical oxidation on a stainless steel316 coated with beta lead oxide (SS316/β-PbO2) anode

Author(s):  
Sommayeh Saadi ◽  
Parisa Mahmoudpoor Moteshaker ◽  
Seyed Ehsan Rokni ◽  
Ghobad Ahmadidoust ◽  
Narges Farnoodian ◽  
...  

AbstractMetronidazole (MNZ) is one of the pharmaceutical products which is considered as one of the most important pollutants in the environment due to its wide use and resistance to biodegradation. Hence, the purpose of this study is the optimization of the electrochemical degradation of the metronidazole (MNZ) antibiotic using electrochemical oxidation on a stainless steel316 coated with beta lead oxide (SS316/β-PbO2) anode. In the studied electrochemical process, the response surface methodology (RSM) involving a five-level ((pH (A) and electrolysis time (B), current density (C), and MNZ concentration (D)). The central composite design (CCD) was employed for optimizing and modeling of the electrochemical process in the degradation of MNZ. The preparation of SS316/β-PbO2 anode was accomplished using the electro-deposition method. Scanning electron microscope (SEM), energy-dispersive X-ray (EDX), and X-ray diffraction (XRD) analyses were conducted for accurate evaluation and characterization of the coated electrode. The effect of influencing factors on electrochemical degradation of MNZ was studied, and the highest MNZ degradation efficiency was observed to be 98.88% after 120 min under the optimal conditions including the supporting electrolyte concentration of 1.0 g/100 cc, the initial MNZ concentration of 30.1 mg/L, pH of 4 and the current density of 9.99 mA/cm2. The linear regression coefficient (R2) between experiments and different response values in the model was 0.99. Moreover, the statistical analysis of the results indicated that in the range studied, the most effective parameters in MNZ degradation are MNZ concentration and pH. In general, it can be concluded that the electrochemical process using SS316/β-PbO2 anode can effectively eliminate metronidazole, and it can be considered as an efficient method in the degradation of various pollutants.

2019 ◽  
Vol 19 (11) ◽  
pp. 7308-7314
Author(s):  
Jinyan Li ◽  
Qingsong Guan ◽  
Junming Hong ◽  
Chang-Tang Chang

Composite electrodes with different graphene (GN)/TiO2 ratios and nano-activated carbon electrodes were prepared for electrocatalytic performance comparison. The electrodes were loaded with platinum (Pt) by use of chloroplatinic acid to promote their performance. Reactive Black 5 (RBk5) dye wastewater was treated as a challenging pollutant by use of advanced electrochemical oxidation technology. The composite materials were characterized by Transmission Electron Microscope (TEM), Field Emission Scanning Electron Microscopy (FE-SEM), and Energy Disperse Spectroscopy (EDS). Results showed that the graphene electrode was prepared successfully and verified because all elements were uniformly loaded on the conductive carbon cloth. The effects of several operating parameters including material types, pH, initial concentration of RBk5, and current density on the removal performance of RBk5 were also assessed. The supporting electrolyte was NaCl solution of 1 g L−1. The concentration of RBk5 was detected using an ultraviolet spectrophotometer with a detection wavelength of 600 nm. The optimum parameters of the experiment were GN/TiO2 ratio of 1:4 and pH of 6.6. The removal efficiency of RBk5 could be higher than 95% under an initial concentration of RBk5 of 5 ppm and a current density of 2.5 mA·cm-2 when reaction time was 30 min.


2021 ◽  
Vol 11 (18) ◽  
pp. 8401
Author(s):  
Rachid El Brychy ◽  
Mohamed Moutie Rguiti ◽  
Nadia Rhazzane ◽  
Moulay Driss Mellaoui ◽  
Khalid Abbiche ◽  
...  

Today, organic wastes (paints, pigments, etc.) are considered to be a major concern for the pollution of aqueous environments. Therefore, it is essential to find new methods to solve this problem. This research was conducted to study the use of electrochemical processes to remove organic pollutants (e.g., crystal violet (CV)) from aqueous solutions. The galvanostatic electrolysis of CV by the use of Ti/Pt/SnO2 anode, were conducted in an electrochemical cell with 100 mL of solution using Na2SO4 and NaCl as supporting electrolyte, the effect of the important electrochemical parameters: current density (20–60 mA cm−2), CV concentration (10–50 mg L−1), sodium chloride concentration (0.01–0.1 g L−1) and initial pH (2 to 10) on the efficiency of the electrochemical process was evaluated and optimized. The electrochemical treatment process of CV was monitored by the UV-visible spectrometry and the chemical oxygen demand (COD). After only 120 min, in a 0.01mol L−1 NaCl solution with a current density of 50 mA cm−2 and a pH value of 7 containing 10 mg L−1 CV, the CV removal efficiency can reach 100%, the COD removal efficiency is up to 80%. The process can therefore be considered as a suitable process for removing CV from coloured wastewater in the textile industries.


2013 ◽  
Vol 377 ◽  
pp. 235-239
Author(s):  
Yun Li ◽  
Liang Fang ◽  
Wei Dong Shen ◽  
Sheng Chun Wang ◽  
Chun Lan Cao ◽  
...  

In order to improve the wear resistance of Al-Si alloys, the electro deposition of Ni-Co-P/Si3N4coating on a hypereutectic Al-Si casting alloy was studied in this paper. The thickness, hardness, surface morphology, composition, adhesive force and wear resistance of Ni-Co-P/Si3N4coating were measured by optical microscope, micro-hardness tester, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), adhesive attraction scratcher and abrasion tester. It was shown that Si3N4particulates were uniformly distributed in the composite coating. And the effect of process parameters, such as electric current density, temperature, PH, plating time and component of electroplating bath,were obtained. The wear resistance of the coating was improved with the increase of hardness and the content of Si3N4in the coating. It was also improved by decreasing electric current density. The adhesion of the coating was poor for increasing the content of P and Co in the coating. At the same time, the coating was hard, friable, and easy to be broken with the decrease of temperature.


2014 ◽  
Vol 788 ◽  
pp. 662-667
Author(s):  
Zhao Yang Wang ◽  
Jing Wu Zheng ◽  
Wei Cai ◽  
Liang Qiao ◽  
Yao Ying ◽  
...  

iamond cutting wire, as a new one, could overcome the defects of traditional cutting wire and would have a wide potential application. Electroplating diamond wire was prepared by composite electroplating in this article. The influence of cathodic current density, the diamond content in the electrolyte and other process conditions on the amount of diamond in the composite coating was checked by EDTA titration analysis. Effects of the diamond content in the electrolyte on electrochemical process of copper-diamond composite electro-deposition were investigated by measuring electrochemical polarization curves. With increasing the cathode current density and the diamond content in the electrolyte, the amount of diamond in the composite increased firstly, and reached a maximum, then decreased. The cathode current decreased with the increase of diamond content in the electrolyte. Copper-diamond composite plating process could be explained by Guglielmi two-step adsorption mechanism. The influence of plating parameters on the deposition behaviors of copper–diamond composite coating layers is ascribe to the change of diamond adsorption state on the cathode surface. After heat treatment, the largest wire tensile force is 159.7 N and the tensile strength reaches to 2258.8 MP.


2020 ◽  
Vol 10 (21) ◽  
pp. 7435
Author(s):  
Annabel Fernandes ◽  
Christopher Pereira ◽  
Susana Coelho ◽  
Celso Ferraz ◽  
Ana C. Sousa ◽  
...  

The ecotoxicity of methiocarb aqueous solutions treated by electrochemical oxidation was evaluated utilizing the model organism Daphnia magna. The electrodegradation experiments were performed using a boron-doped diamond anode and the influence of the applied current density and the supporting electrolyte (NaCl or Na2SO4) on methiocarb degradation and toxicity reduction were assessed. Electrooxidation treatment presented a remarkable efficiency in methiocarb complete degradation and a high potential for reducing the undesirable ecological effects of this priority substance. The reaction rate followed first-order kinetics in both electrolytes, being more favorable in a chloride medium. In fact, the presence of chloride increased the methiocarb removal rate and toxicity reduction and favored nitrogen removal. A 200× reduction in the acute toxicity towards D. magna, from 370.9 to 1.6 toxic units, was observed for the solutions prepared with NaCl after 5 h treatment at 100 A m−2. An increase in the applied current density led to an increase in toxicity towards D. magna of the treated solutions. At optimized experimental conditions, electrooxidation offers a suitable solution for the treatment and elimination of undesirable ecological effects of methiocarb contaminated industrial or agricultural wastewaters, ensuring that this highly hazardous pesticide is not transferred to the aquatic environment.


2014 ◽  
Vol 278 ◽  
pp. 221-226 ◽  
Author(s):  
Fernando L. Guzmán-Duque ◽  
Ricardo E. Palma-Goyes ◽  
Ignacio González ◽  
Gustavo Peñuela ◽  
Ricardo A. Torres-Palma

2012 ◽  
Vol 66 (11) ◽  
pp. 2468-2474 ◽  
Author(s):  
X. Y. Duan ◽  
F. Ma ◽  
L. M. Chang

The electrochemical oxidation of 4-chlorophenol (4-CP) in aqueous solution was studied by electrochemical oxidation using modified PbO2 electrode as anode. The influence of several operating parameters, such as initial 4-CP concentration, applied current density, and supporting electrolyte (Na2SO4) concentration was investigated. Ultraviolet spectroscopy and total organic carbon (TOC) measurements were conducted to study the kinetics of 4-CP electrochemical reaction and the mineralization efficiency of 4-CP. The experimental results showed that the 4-CP degradation always followed a pseudo-first-order kinetics. The higher mineralization of 4-CP and the lower current efficiency (CE) were obtained by the lower initial 4-CP concentration. The applied current density showed a positive influence on the degradation of 4-CP and the removal of TOC, but a higher applied current density led to a lower CE. Although Na2SO4 concentration of 0.05 M resulted in a higher 4-CP and TOC removal, the result of one-way analysis of variance (ANOVA) indicates that Na2SO4 concentration is not the significant parameter for 4-CP removal in electrochemical oxidation.


1997 ◽  
Vol 36 (2-3) ◽  
pp. 123-130 ◽  
Author(s):  
Li-Choung Chiang ◽  
Juu-En Chang ◽  
Shu-Chuan Tseng

Refractory pollutants, including lignin, tannic acid, chlortetracycline, and EDTA, were destroyed by an electrochemical oxidation method to evaluate the applicability of this method for industrial wastewater pretreatment. Operation parameters, such as supporting electrolyte, current density, and electrolyte concentration, have been investigated for their influences on COD removal efficiencies during electrolysis. In addition, gel permeation chromatography (GPC), Microtox test, and total organic halogen (TOX) analyses were performed to monitor the changes of organic characteristics of these refractory pollutants. Experimental results show that, among sulfate, nitrate, and chloride, chloride was the best supporting electrolyte, and during electrolysis, both COD and color removal efficiencies were improved by increasing current density and chloride concentration. From GPC analysis results, the electrochemical oxidation process readily destroys high-molecular-weight (HMW) organics. Microtox test results also show that the process can reduce the toxicity of these refractory organic compounds. In addition, TOX concentrations were found to increase at the beginning but then decline during the electrolysis. The above results suggest that the electrochemical oxidation process, which has good efficacy for detoxification and destruction of refractory pollutants, is a promising method for wastewater pretreatment.


2011 ◽  
Vol 183-185 ◽  
pp. 575-579
Author(s):  
Hui Wang ◽  
Zhao Yong Bian ◽  
Guang Lu ◽  
Xiang Jia Wei ◽  
Xiu Juan Yu ◽  
...  

Electrochemical degradation of phenol was studied in an undivided cell with a Ti/IrO2/RuO2 anode and a carbon/polytetrafluoroethylene (C/PTFE) O2-fed cathode which produced hydrogen peroxide (H2O2) by the electro-reduction of dissolved oxygen. The effect of current density, supporting electrolyte concentration and initial pH on the removal efficiency of phenol were investigated systematically. Results indicated that the optimal removal efficiency of phenol was achieved under the conditions of current density of 39 mA/cm2 and supporting electrolyte concentration of 0.02 mol/L. The phenol removal efficiency in the neutral condition was higher than that of acidic and basic conditions. The chemical oxygen demand (COD) and total organic carbon (TOC) removal achieved 71.6% and 63.6% for 100 min’s electrolysis, respectively. Benzoquinone, maleic acid, oxalic acid, acetic acid and formic acid were identified as intermediates by HPLC. A general phenol degradation pathway involving all these intermediates was proposed.


2012 ◽  
Vol 4 (2) ◽  
pp. 304-309 ◽  
Author(s):  
A. K. Chopra ◽  
Arun Kumar Sharma

The present investigation observed the effect of operating time, current density, pH and supporting electrolyte on the removal efficiency of Turbidity (TD) and Biochemical oxygen demand (BOD) of secondarily treated sewage (STS) using electrochemical process. A glass chamber of 2 litre volume was used for the experiment with two electrode plates of aluminum, each having an area of 125 cm2 and 2 cm distance apart from each other. The treatment showed that the removal efficiency of TD and BOD increased to 87.41 and 81.38 % respectively with theincrease of current density (1.82 -7.52 mA/cm2), time (5 - 40 mins.) and different pH (4-8) of the STS. The most effective removal efficiency was observed around the pH 7. Further, 0.5 g/l NaCl as a supporting electrolyte for electrochemical treatment of STS was found to be more efficient for an increase to 95.56 % and 86.99 % for the removal of TD and BOD at 7.52 mA/cm2 current density in 40 mins. respectively. The electrode and energy consumption was found to vary from 2.52 x10-2 to 10.51 x10-2 kg Al/m3 and 2.76 kwh/m3 to 45.12 kWh/m3 depending on the operating conditions.The kinetic study results revealed that reaction rate (k) increased from 0.0174 to 0.03 min-1 for TD and 0.0169 to 0.024 min-1 for BOD with increase in current density from 1.82 to 7.52 mA/cm2.


Sign in / Sign up

Export Citation Format

Share Document