Comparative study on photooxidation of methyl orange using various UV/oxidant systems

Author(s):  
Soraya Boukhedoua ◽  
Razika Zouaghi ◽  
Oualida Nour El Houda Kaabeche

Abstract In the present work, a comparative study of the photooxidation of an aqueous solution of Methyl Orange (MeO) has been realized using H2O2 and IO3 −, BrO3 −, ClO3 −, ClO4 −, BO3 − ions in the presence of UV low pressure mercury lamp (UV-C light at λ max = 254 nm). The initial concentration of MeO in all experiments was 6 × 10−5 mol L−1. The degradation rate of MeO follows pseudo-first-order kinetics in all UV/Oxidant systems. The highest degradation rate of MeO was in the BrO3 −/UV254nm system. Different systems were compared for an oxidant concentration of 10−2 mol L−1 and the obtained results showed that decolorization followed the decreasing order: BrO 3 − /UV 254 nm  > IO 3 − /UV 254 nm  > H 2 O 2 /UV 254 nm  > BO 3 − /UV 254 nm  > ClO 3 − /UV 254 nm  = ClO 4 − /UV 254 nm  = UV 254 nm . The optimization of oxidants concentration for each process was determined (10−2 mol L−1 for IO3 − which gives almost the same k app for 5 × 10−3, 10−2 mol L−1 for BO3 − and 5 × 10−2 mol L−1 for H2O2). No degradation of MeO in presence of ClO3 − and ClO4 − because these ions do not absorb at 254 nm, therefore they do not generate radical species which degrade organic pollutants. The mineralization was also studied where it was reached 97% after 5 h of irradiation for both H2O2/UV254 nm and BO3 −/UV254 nm systems.

2020 ◽  
Vol 21 (1) ◽  
pp. 15-21
Author(s):  
Noor A. Mohammed ◽  
Abeer I. Alwared ◽  
Mohammed S. Salman

In the present study, advanced oxidation treatment, the TiO2 /UV/H2O2  process was applied to decolorisation of the reactive yellow dyes in aqueous solution. The UV radiation was carried out with a 6 W low-pressure mercury lamp. The rate of color removal was studied by measuring the absorbency at a characteristic wavelength. The effects of H2O2 dosage, dye initial concentration and pH on decolorisation kinetics in the batch photoreactor were investigated. The highest decolorisation rates were observed (98.8) at pH range between 3 and 7. The optimal levels of H2O2 needed for the process were examined. It appears that high levels of H2O2 could reduce decolorisation by scavenging the *OH. The color degradation rate decreases as the dye concentration increases. The rate coefficient (k=0.0319 min-1) of degradation, follows the pseudo-first-order kinetics.


2012 ◽  
Vol 65 (11) ◽  
pp. 1970-1974 ◽  
Author(s):  
C. Y. Kuo ◽  
C. Y. Pai ◽  
C. H. Wu ◽  
M. Y. Jian

This study applies photo-Fenton and photo-Fenton-like systems to decolorize C.I. Reactive Red 2 (RR2). The oxidants were H2O2 and Na2S2O8; Fe2+, Fe3+, and Co2+ were used to activate these two oxidants. The effects of oxidant concentration (0.3–2 mmol/L) and temperature (25–55 °C) on decolorization efficiency of the photo-Fenton and photo-Fenton-like systems were determined. The decolorization rate constants (k) of RR2 in the tested systems are consistent with pseudo-first-order kinetics. The rate constant increased as oxidant concentration and temperature increased. Activation energies of RR2 decolorization in the UV/H2O2/Fe2+, UV/H2O2/Fe3+, UV/Na2S2O8/Fe2+ and UV/Na2S2O8/Fe3+ systems were 32.20, 39.54, 35.54, and 51.75 kJ/mol, respectively.


2012 ◽  
Vol 441 ◽  
pp. 549-554
Author(s):  
Ying Jie Cai ◽  
Xiao Jun Yang ◽  
Dong Sheng Xia ◽  
Qing Fu Zeng

Abstract. Degradation of reactive brilliant red X-3B (X-3B) by a UV/Mn2+/H2O2/micro- aeration method was investigated. The influencing factors of degradation of X-3B including UV irradiation, aeration, pH value, H2O2 concentration and X-3B concentration were examined. The results show that X-3B was effectively degraded by the UV/Mn2+/H2O2/micro-aeration method. The degradation rate of X-3B was obtained from weighted linear least squares analysis of the experimental data, and accorded with the pseudo-first order kinetics equation.


2013 ◽  
Vol 39 (2) ◽  
pp. 17-28 ◽  
Author(s):  
Anoop Verma ◽  
Harmanpreet Kaur ◽  
Divya Dixit

Abstract The photocatalytic, sonolytic and sonophotocatalytic degradation of 4-chloro-2-nitrophenol (4C2NP) using heterogeneous (TiO2) was investigated in this study. Experiments were performed in slurry mode with artificial UV 125 watt medium pressure mercury lamp coupled with ultrasound (100 W, 33+3 KHz) for sonication of the slurry. The degradation of compound was studied in terms of first order kinetics. The catalyst concentration was optimized at 1.5 gL-1, pH at 7 and oxidant concentration at 1.5 gL-1. The results obtained were quite appreciable as 80% degradation was obtained for photocatalytic treatment in 120 minutes whereas, ultrasound imparting synergistic effect as degradation achieved 96% increase in 90 minutes during sonophotocatalysis. The degradation follows the trend sonophotocatalysis > photocatalysis > sonocatalytic > sonolysis. The results of sonophotocatalytic degradation of pharmaceutical compound showed that it could be used as efficient and environmentally friendly technique for the complete degradation of recalcitrant organic pollutants which will increase the chances for the reuse of wastewater.


2015 ◽  
Vol 71 (3) ◽  
pp. 412-417 ◽  
Author(s):  
J. T. Wu ◽  
C. H. Wu ◽  
C. Y. Liu ◽  
W. J. Huang

This study used Na2S2O8, NaBrO8 and H2O2 to degrade sulfadiazine (SDZ), sulfamethizole (SFZ), sulfamethoxazole (SMX) and sulfathiazole (STZ) under ultraviolet (UV) irradiation. The initial concentration of sulfonamide and oxidant in all experiments was 20 mg/L and 5 mM, respectively. The degradation rate for sulfonamides satisfies pseudo-first-order kinetics in all UV/oxidant systems. The highest degradation rate for SDZ, SFZ, SMX and STZ was in the UV/Na2S2O8, UV/NaBrO3, UV/Na2S2O8 and UV/H2O2 system, respectively. In the UV/Na2S2O8 system, the photodegradation rate of SDZ, SFZ, SMX and STZ was 0.0245 min−1, 0.0096 min−1, 0.0283 min−1 and 0.0141 min−1, respectively; moreover, for the total organic carbon removal rate for SDZ, SFZ, SMX and STZ it was 0.0057 min−1, 0.0081 min−1, 0.0130 min−1 and 0.0106 min−1, respectively. Experimental results indicate that the ability of oxidants to degrade sulfonamide varied with pollutant type. Moreover, UV/Na2S2O8 had the highest mineralization rate for all tested sulfonamides.


2019 ◽  
Vol 79 (11) ◽  
pp. 2195-2202
Author(s):  
Jie Yao ◽  
Jinglin Guo ◽  
Zhaoguang Yang ◽  
Haipu Li ◽  
Bo Qiu

Abstract The monoterpene alcohol α-terpineol is extensively used as the foaming agent in mineral processing and can be released to environment along with the wastewater. This study evaluated the feasibility of eliminating α-terpineol in water by ultraviolet irradiation (UV) in combination with hydrogen peroxide (H2O2). Within an H2O2 dose of 10 mg/L and an UV fluence of 64.8 J/cm2, more than 95% of the α-terpineol can be removed. The reactions fitted well to pseudo-first-order kinetics, and the apparent rate constant was 0.0678 min−1. The effects of matrix species including various anions and humic acid (HA), were evaluated. The degradation rate decreased significantly with the addition of bicarbonate and HA. Further verification was carried out with three types of real water samples. In the ground water and the surface water, the degradation rate decreased likely due to the presence of natural organic matter. Finally, possible degradation pathways were proposed based on the identification of transformation products, and the occurrence of two main transformation products were monitored. This study demonstrated that the UV/H2O2 is an effective technology for the degradation of α-terpineol in water.


TAPPI Journal ◽  
2018 ◽  
Vol 17 (03) ◽  
pp. 167-178 ◽  
Author(s):  
Xin Tong ◽  
Jiao Li ◽  
Jun Ma ◽  
Xiaoquan Chen ◽  
Wenhao Shen

Studies were undertaken to evaluate gaseous pollutants in workplace air within pulp and paper mills and to consider the effectiveness of photo-catalytic treatment of this air. Ambient air at 30 sampling sites in five pulp and paper mills of southern China were sampled and analyzed. The results revealed that formaldehyde and various benzene-based molecules were the main gaseous pollutants at these five mills. A photo-catalytic reactor system with titanium dioxide (TiO2) was developed and evaluated for degradation of formaldehyde, benzene and their mixtures. The experimental results demonstrated that both formaldehyde and benzene in their pure forms could be completely photo-catalytic degraded, though the degradation of benzene was much more difficult than that for formaldehyde. Study of the photo-catalytic degradation kinetics revealed that the degradation rate of formaldehyde increased with initial concentration fitting a first-order kinetics reaction. In contrast, the degradation rate of benzene had no relationship with initial concentration and degradation did not conform to first-order kinetics. The photo-catalytic degradation of formaldehyde-benzene mixtures indicated that formaldehyde behaved differently than when treated in its pure form. The degradation time was two times longer and the kinetics did not reflect a first-order reaction. The degradation of benzene was similar in both pure form and when mixed with formaldehyde.


2019 ◽  
Author(s):  
Chem Int

The kinetics of oxidation of methyl orange by vanadium(V) {V(V)} has been investigated in the pH range 2.3-3.79. In this pH range V(V) exists both in the form of decavanadates and VO2+. The kinetic results are distinctly different from the results obtained for the same reaction in highly acidic solution (pH < 1) where V(V) exists only in the form of VO2+. The reaction obeys first order kinetics with respect to methyl orange but the rate has very little dependence on total vanadium concentration. The reaction is accelerated by H+ ion but the dependence of rate on [H+] is less than that corresponding to first order dependence. The equilibrium between decavanadates and VO2+ explains the different kinetic pattern observed in this pH range. The reaction is markedly accelerated by Triton X-100 micelles. The rate-[surfactant] profile shows a limiting behavior indicative of a unimolecular pathway in the micellar pseudophase.


2020 ◽  
Vol 16 ◽  
Author(s):  
M. Alarjah

Background: Prodrugs principle is widely used to improve the pharmacological and pharmacokinetic properties of some active drugs. Much effort was made to develop metronidazole prodrugs to enhance antibacterial activity and or to improve pharmacokinetic properties of the molecule or to lower the adverse effects of metronidazole. Objective: In this work, the pharmacokinetic properties of some of monoterpenes and eugenol pro metronidazole molecules that were developed earlier were evaluated in-vitro. The kinetic hydrolysis rate constants and half-life time estimation of the new metronidazole derivatives were calculated using the validated RP-HPLC method. Method: Chromatographic analysis was done using Zorbbax Eclipse eXtra Dense Bonding (XDB)-C18 column of dimensions (250 mm, 4.6 mm, 5 μm), at ambient column temperature. The mobile phase was a mixture of sodium dihydrogen phosphate buffer of pH 4.5 and methanol in gradient elution, at 1ml/min flow rate. The method was fully validated according to the International Council for Harmonization (ICH) guidelines. The hydrolysis process carried out in an acidic buffer pH 1.2 and in an alkaline buffer pH 7.4 in a thermostatic bath at 37ºC. Results: The results followed pseudo-first-order kinetics. All metronidazole prodrugs were stable in the acidic pH, while they were hydrolysed in the alkaline buffer within a few hours (6-8 hr). The rate constant and half-life values were calculated, and their values were found to be 0.082- 0.117 hr-1 and 5.9- 8.5 hr., respectively. Conclusion: The developed method was accurate, sensitive, and selective for the prodrugs. For most of the prodrugs, the hydrolysis followed pseudo-first-order kinetics; the method might be utilised to conduct an in-vivo study for the metronidazole derivatives with monoterpenes and eugenol.


2019 ◽  
Vol 2019 ◽  
pp. 1-10
Author(s):  
Anna Gumieniczek ◽  
Anna Berecka-Rycerz ◽  
Rafał Pietraś ◽  
Izabela Kozak ◽  
Karolina Lejwoda ◽  
...  

A comparative study of chemical stability of terfenadine (TER) and itsin vivometabolite fexofenadine (FEX) was performed. Both TER and FEX were subjected to high temperature at different pH and UV/VIS light at different pH and then quantitatively analyzed using new validated LC-UV methods. These methods were used to monitor the degradation processes and to determine the kinetics of degradation for both the compounds. As far as the effects of temperature and pH were concerned, FEX occurred more sensitive to degradation than TER. As far as the effects of UV/VIS light and pH were concerned, the both drugs were similarly sensitive to high doses of light. Using all stress conditions, the processes of degradation of TER and FEX followed the first-order kinetics. The results obtained for these two antihistaminic drugs could be helpful in developing their new derivatives with higher activity and stability at the same time.


Sign in / Sign up

Export Citation Format

Share Document