Effect of PNF technique for knee muscles on lower limb performance in subacute stroke – an experimental study

Author(s):  
Sanjiv Kumar ◽  
Shiva Prasad Tiwari

AbstractApproximately two-thirds of stroke survivors have sequel of neurological impairments. Although all sequels have direct impact on the performance of activities of daily living, motor deficits of the lower limbs have the most important impact on an individual’s functioning. The objective was to study the effect of proprioceptive neuromuscular facilitation (PNF) technique on lower limb performance in subjects with subacute stroke.Thirteen participants with subacute strokes were recruited. Participants were treated with PNF rhythmic stabilization technique. All participants received 10 days of intervention. Treatment sessions consisted of PNF rhythmic stabilization exercises for knee that utilizes alternating isometric contractions of agonist and antagonist against resistance. Lower limb performances were measured with Modified Emory Functional Ambulation Profile, Five Time Sit To Stand Test and Postural Assessment Scale For Stroke.Lower limb performances were improved after 10 days of intervention as compared to baseline assessment in all the outcome measures.This study suggests that the rhythmic stabilization technique is an effective method to improve lower limb function that can be used as an adjunct with other therapies.

Biology ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 510
Author(s):  
Laura Muñoz-Bermejo ◽  
José Carmelo Adsuar ◽  
María Mendoza-Muñoz ◽  
Sabina Barrios-Fernández ◽  
Miguel A. Garcia-Gordillo ◽  
...  

Functional independence in adults is conditioned by lower limb muscle strength. Thus, it seems important to assess lower limb strength using reliable and easy to reproduce measurements. The purpose of this study was to conduct a systematic review and meta-analysis to collect studies that examined the test-retest reliability of the Five Times Sit to Stand Test (FTSST) in adults. The search was conducted in PubMed, Web of Science, and Scopus databases, including all studies published up to 28 December 2020. To be included, studies had to include relative reliability scores (ICC) and maximum torque or standard error of measurements (SEM) of FTSST. A total of 693 studies were initially identified, but only 8 met the eligibility criteria and were included in the meta-analysis, covering a total of 14 groups with 400 participants. Relative inter-rater reliability results (ICC = 0.937, p < 0.001, n = 400) revealed excellent reliability of FTSST to assess sitting and standing performance, lower limbs strength and balance control. Conclusion: The Five Times Sit to Stand Test is a highly reliable tool for assessing lower limbs strength, balance control, and mobility in both healthy adults and those with pathologies.


Author(s):  
Pallavi Harjpal ◽  
Moh'd Irshad Qureshi ◽  
Rakesh Krishna Kovela ◽  
Moli Jain

Background: One of the significant causes of morbidity worldwide and an essential contributor to disability is Stroke. As said by the National Stroke Association, nine post-stroke survivors out of 10 experience some degree of weakness post-stroke. The hemiplegic patients with sub-acute stroke, who will undergo training to both the lower limb overtraining to only involved side will have an improvement in balance and walking. The goal of this study is to see how much training to both the lower limb improves functional recovery in patients who have had a subacute stroke compared to unilateral, more insufficient limb training. Objective: The goal of this study was to see how training to both the lower limb overtraining to the hemiparetic lower limb on balance and walking in subacute stroke patients. Methods: A randomized clinical study with assessor blinding will be conducted with participants with subacute stroke (n=40). Participants will be randomized to one of two groups after performing baseline assessments: Group A or Group B.1st group will receive training only to the hemiparetic side, i.e., Motor Relearning Programme and Proprioceptive Neuromuscular Facilitation, and 2nd group participants will receive bilateral training, i.e., Strengthening to the unaffected side along with Motor Relearning Programme and Proprioceptive Neuromuscular Facilitation to the affected side. During the therapy period, we will assess lower limb function through static and dynamic balance, walking, and gait measures. Results: The purpose of the research is to look into the effect of training to both the lower limb overtraining to the hemiparetic lower limb on balance and walking in subacute stroke patients. The results of this study will be based on the outcome measures that are static and dynamic balance in the stroke patients and walking. Conclusion: The study's findings will shed more light on the benefits of training to both the lower limb overtraining to only involved side in patients post-stroke. If this trial proves successful, it will help post-stroke patients improve their balance and walking.


Author(s):  
Allaoua Brahmia ◽  
Ridha Kelaiaia

Abstract To establish an exercise in open muscular chain rehabilitation (OMC), it is necessary to choose the type of kinematic chain of the mechanical / biomechanical system that constitutes the lower limbs in interaction with the robotic device. Indeed, it’s accepted in biomechanics that a rehabilitation exercise in OMC of the lower limb is performed with a fixed hip and a free foot. Based on these findings, a kinematic structure of a new machine, named Reeduc-Knee, is proposed, and a mechanical design is carried out. The contribution of this work is not limited to the mechanical design of the Reeduc-Knee system. Indeed, to define the minimum parameterizing defining the configuration of the device relative to an absolute reference, a geometric and kinematic study is presented.


2021 ◽  
Vol 6 (1) ◽  
pp. 16
Author(s):  
Kara B. Bellenfant ◽  
Gracie L. Robbins ◽  
Rebecca R. Rogers ◽  
Thomas J. Kopec ◽  
Christopher G. Ballmann

The purpose of this study was to investigate the effects of how limb dominance and joint immobilization alter markers of physical demand and muscle activation during ambulation with axillary crutches. In a crossover, counterbalanced study design, physically active females completed ambulation trials with three conditions: (1) bipedal walking (BW), (2) axillary crutch ambulation with their dominant limb (DOM), and (3) axillary crutch ambulation with their nondominant limb (NDOM). During the axillary crutch ambulation conditions, the non-weight-bearing knee joint was immobilized at a 30-degree flexion angle with a postoperative knee stabilizer. For each trial/condition, participants ambulated at 0.6, 0.8, and 1.0 mph for five minutes at each speed. Heart rate (HR) and rate of perceived exertion (RPE) were monitored throughout. Surface electromyography (sEMG) was used to record muscle activation of the medial gastrocnemius (MG), soleus (SOL), and tibialis anterior (TA) unilaterally on the weight-bearing limb. Biceps brachii (BB) and triceps brachii (TB) sEMG were measured bilaterally. sEMG signals for each immobilization condition were normalized to corresponding values for BW.HR (p < 0.001) and RPE (p < 0.001) were significantly higher for both the DOM and NDOM conditions compared to BW but no differences existed between the DOM and NDOM conditions (p > 0.05). No differences in lower limb muscle activation were noted for any muscles between the DOM and NDOM conditions (p > 0.05). Regardless of condition, BB activation ipsilateral to the ambulating limb was significantly lower during 0.6 mph (p = 0.005) and 0.8 mph (p = 0.016) compared to the same speeds for BB on the contralateral side. Contralateral TB activation was significantly higher during 0.6 mph compared to 0.8 mph (p = 0.009) and 1.0 mph (p = 0.029) irrespective of condition. In conclusion, limb dominance appears to not alter lower limb muscle activation and walking intensity while using axillary crutches. However, upper limb muscle activation was asymmetrical during axillary crutch use and largely dependent on speed. These results suggest that functional asymmetry may exist in upper limbs but not lower limbs during assistive device supported ambulation.


2021 ◽  
Vol 28 (Supplement_1) ◽  
Author(s):  
M Borges ◽  
M Lemos Pires ◽  
R Pinto ◽  
G De Sa ◽  
I Ricardo ◽  
...  

Abstract Funding Acknowledgements Type of funding sources: None. Introduction Exercise prescription is one of the main components of phase III Cardiac Rehabilitation (CR) programs due to its documented prognostic benefits. It has been well established that, when added to aerobic training, resistance training (RT) leads to greater improvements in peripheral muscle strength and muscle mass in patients with cardiovascular disease (CVD). With COVID-19, most centre-based CR programs had to be suspended and CR patients had to readjust their RT program to a home-based model where weight training was more difficult to perform. How COVID-19 Era impacted lean mass and muscle strength in trained CVD patients who were attending long-term CR programs has yet to be discussed. Purpose To assess upper and lower limb muscle strength and lean mass in CVD patients who had their centre-based CR program suspended due to COVID-19 and compare it with previous assessments. Methods 87 CVD patients (mean age 62.9 ± 9.1, 82.8% male), before COVID-19, were attending a phase III centre-based CR program 3x/week and were evaluated annually. After 7 months of suspension, 57.5% (n = 50) patients returned to the face-to-face CR program. Despite all constraints caused by COVID-19, body composition and muscle strength of 35 participants (mean age 64.7 ± 7.9, 88.6% male) were assessed. We compared this assessment with previous years and established three assessment time points: M1) one year before COVID-19 (2018); M2) last assessment before COVID-19 (2019); M3) the assessment 7 months after CR program suspension (last trimester of 2020). Upper limbs strength was measured using a JAMAR dynamometer, 30 second chair stand test (number of repetitions – reps) was used to measure lower limbs strength and dual energy x-ray absorptiometry was used to measure upper and lower limbs lean mass. Repeated measures ANOVA were used. Results Intention to treat analysis showed that upper and lower limbs lean mass did not change from M1 to M2 but decreased significantly from M2 to M3 (arms lean mass in M2: 5.68 ± 1.00kg vs M3: 5.52 ± 1.06kg, p = 0.004; legs lean mass in M2: 17.40 ± 2.46kg vs M3: 16.77 ± 2.61kg, p = 0.040). Lower limb strength also decreased significantly from M2 to M3 (M2: 23.31 ± 5.76 reps vs M3: 21.11 ± 5.31 reps, p = 0.014) after remaining stable in the year prior to COVID-19. Upper limb strength improved significantly from M1 to M2 (M1: 39.00 ± 8.64kg vs M2: 40.53 ± 8.77kg, p = 0.034) but did not change significantly from M2 to M3 (M2 vs M3: 41.29 ± 9.13kg, p = 0.517). Conclusion After CR centre-based suspension due to COVID-19, we observed a decrease in upper and lower limbs lean mass and lower limb strength in previously trained CVD patients. These results should emphasize the need to promote all efforts to maintain physical activity and RT through alternative effective home-based CR programs when face-to-face models are not available or possible to be implemented.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Xiaoxing Lai ◽  
Lin Bo ◽  
Hongwei Zhu ◽  
Baoyu Chen ◽  
Zhao Wu ◽  
...  

Abstract Background Few studies examined interventions in frail elderly in China, while the awareness of applying interventions to prevent frailty in pre-frail elderly is still lacking. This study aimed to explore the effects of lower limb resistance exercise in pre-frail elderly in China. Methods This was a randomized controlled trial of patients with pre-frailty. The control group received routine care, while the exercise group received a 12-week lower limb resistance exercise based on routine care. The muscle strength in the lower limbs, physical fitness, and energy metabolism of the patients was evaluated at admission and after 12 weeks of intervention. Results A total of 60 pre-frail elderly were included in this study. The patients were divided into the exercise group (n = 30) and control group (n = 30) by random grouping. There were 17 men and 13 women aged 65.3 ± 13.4 in the exercise group, and 15 men and 15 women aged 67.6 ± 11.9 years in the control groups. The Barthel index was 80.3 ± 10.6 and 85.1 ± 11.6, respectively. The characteristics of the two groups were not significantly different before intervention (all p > 0.05). The results of repeated measurement ANOVA showed that there was statistically significant in crossover effect of group * time (all p < 0.05), that is, the differences of quadriceps femoris muscle strength, 6-min walking test, 30-s sit-to-stand test, 8-ft “up & go” test, daily activity energy expenditure and metabolic equivalent between the intervention group and the control group changed with time, and the variation ranges were different. The main effects of time were statistically significant (all p < 0.05), namely, femoris muscle strength, 6-min walking test, 30-s sit-to-stand test, 8-ft “up & go” test, daily activity energy expenditure and metabolic equivalent of the intervention group and the control group were significantly different before and after intervention. The main effects of groups were statistically significant (p < 0.05), namely, femoris muscle strength, 6-min walking test, 30-s sit-to-stand test, daily activity energy expenditure and metabolic equivalent before and after intervention were significantly different between the intervention group and the control group, while there was no significant differences in 8-ft “up & go” test between groups. Conclusion Lower limb resistance exercise used for the frailty intervention could improve muscle strength, physical fitness, and metabolism in pre-frail elderly. Trial registration ChiCTR, ChiCTR2000031099. Registered 22 March 2020, http://www.chictr.org.cn/edit.aspx?pid=51221&htm=4


Author(s):  
Lucas Sousa Macedo ◽  
Renato Polese Rusig ◽  
Gustavo Bersani Silva ◽  
Alvaro Baik Cho ◽  
Teng Hsiang Wei ◽  
...  

BACKGROUND: Microsurgical flaps are widely used to treat complex traumatic wounds of upper and lower limbs. Few studies have evaluated whether the vascular changes in preoperative computed tomography angiography (CTA) influence the selection of recipient vessel and type of anastomosis and the microsurgical flaps outcomes including complications. OBJECTIVE: The aim of this study was to evaluate if preoperative CTA reduces the occurrence of major complications (revision of the anastomosis, partial or total flap failure, and amputation) of the flaps in upper and lower limb trauma, and to describe and analyze the vascular lesions of the group with CTA and its relationship with complications. METHODS: A retrospective cohort study was undertaken with all 121 consecutive patients submitted to microsurgical flaps for traumatic lower and upper limb, from 2014 to 2020. Patients were divided into two groups: patients with preoperative CTA (CTA+) and patients not submitted to CTA (CTA–). The presence of postoperative complications was assessed and, within CTA+, we also analyzed the number of patent arteries on CTA and described the arterial lesions. RESULTS: Of the 121 flaps evaluated (84 in the lower limb and 37 in the upper limb), 64 patients underwent preoperative CTA. In the CTA+ group, 56% of patients with free flaps for lower limb had complete occlusion of one artery. CTA+ patients had a higher rate of complications (p = 0.031), which may represent a selection bias as the most complex limb injuries and may have CTA indicated more frequently. The highest rate of complications was observed in chronic cases (p = 0.034). There was no statistically significant difference in complications in patients with preoperative vascular injury or the number of patent arteries. CONCLUSIONS: CTA should not be performed routinely, however, CTA may help in surgical planning, especially in complex cases of high-energy and chronic cases, since it provides information on the best recipient artery and the adequate level to perform the microanastomosis, outside the lesion area.


Author(s):  
Anssam Bassem Mohy ◽  
Aqeel Kareem Hatem ◽  
Hussein Ghani Kadoori ◽  
Farqad Bader Hamdan

Abstract Background Transcranial magnetic stimulation (TMS) is a non-invasive procedure used in a small targeted region of the brain via electromagnetic induction and used diagnostically to measure the connection between the central nervous system (CNS) and skeletal muscle to evaluate the damage that occurs in MS. Objectives The study aims to investigate whether single-pulse TMS measures differ between patients with MS and healthy controls and to consider if these measures are associated with clinical disability. Patients and methods Single-pulse TMS was performed in 26 patients with MS who hand an Expanded Disability Status Scale (EDSS) score between 0 and 9.5 and in 26 normal subjects. Different TMS parameters from upper and lower limbs were investigated. Results TMS disclosed no difference in all MEP parameters between the right and left side of the upper and lower limbs in patients with MS and controls. In all patients, TMS parameters were different from the control group. Upper limb central motor conduction time (CMCT) was prolonged in MS patients with pyramidal signs. Upper and lower limb CMCT and CMCT-f wave (CMCT-f) were prolonged in patients with ataxia. Moreover, CMCT and CMCT-f were prolonged in MS patients with EDSS of 5–9.5 as compared to those with a score of 0–4.5. EDSS correlated with upper and lower limb cortical latency (CL), CMCT, and CMCT-f whereas motor evoked potential (MEP) amplitude not. Conclusion TMS yields objective data to evaluate clinical disability and its parameters correlated well with EDSS.


Author(s):  
Akbar Hojjati Najafabadi ◽  
Saeid Amini ◽  
Farzam Farahmand

Physical problems caused by fractures, aging, stroke, and accidents can reduce foot power; these, in the long term, can dwindle the muscles of the waist, thighs, and legs. These conditions provide the basis for the invalidism of the harmed people. In this study, a saddle-walker was designed and evaluated to help people suffering from spinal cord injury and patients with lower limb weakness. This S-AD works based on body weight support against the previously report designs. This saddle-walker consisted of a non-powered four-wheel walker helping to walk and a powered mechanism for the sit-to-stand (STS) transfer. A set of experiments were done on the STS in the use of the standard walker and the saddle-assistive device(S-AD). A comparison of the results showed that this device could reduce the vertical ground reaction force (GRF) of the legs up to 70%. Using this device could help a wide range of patients with lower limb weakness and SCI patients in changing from sitting to standing.


Sign in / Sign up

Export Citation Format

Share Document