Modeling of Continuous Ultrasonication to Improve Total Phenolic Content and Antioxidant Activity in Sorghum Flour: A Comparison between Response Surface Methodology and Artificial Neural Network

Author(s):  
Umesh C. Lohani ◽  
K. Muthukumarappan

Abstract Fermentation followed by continuous ultrasonication was applied to release the bound phenolics in sorghum flour (SF). Total phenolic content (TPC) and antioxidant activity (AA) increased with decrease in fermentation time (FT), flour to water ratio (FWR), flow rate (FR) and ultrasonication intensity (UI). The influence of process variables was investigated by Box–Behnken design and multi-layer perceptron neural network. The optimum conditions for maximum TPC and AA were obtained as 12 h FT, 10 % (w/v) FWR, 20 W/cm2 UI, 4 ml/s FR and 120 s UT. The values observed for TPC and AA at optimum conditions were 90.1 mg GAE/100 g dm and 190.1 µmol TE/100 g dm, respectively, while these values for control SF were observed as 63.9 mg GAE/100 g dm and 133.5 µmol TE/100 g dm. Ultrasonication improved the free phenolic acid content by releasing bound phenolics in SF. The ANN model prediction was more precise compared to the RSM model.

2018 ◽  
Vol 14 ◽  
pp. 468-472
Author(s):  
Vilailak Klompong

The objective of this study was to utilize husk, byproduct from milling, and paddy of Sangyod rice that rich in bioactive compound to produce value added product as wine by reducing milling step of paddy. Quality changes, total phenolic content and antioxidant activity of wines from Sangyod rice grain, paddy and husk were monitored throughout the fermentation period. The acceptance of finished products from consumer drinking wine was also investigated. Alcohol content of three types of wine increased as the fermentation time increased. Paddy wine showed the fastest alcohol production following by rice grain and husk wine, respectively (P<0.05). Generally, total soluble solid and pH of wines decreases as the fermentation time increased. Yeast and mold increased throughout the fermentation time. As the fermentation time increased, total phenolic content and antioxidant activity including DPPH radical scavenging activity, ferric reducing antioxidant power (FRAP) and metal chelating activity increased throughout the fermentation period (P<0.05) related to total phenolic content. Total phenolic content in three types of wines increased from 32-53 to 125-178 (mg GAE/ml). Generally, paddy wine possessed the highest total phenolic content and antioxidant activities when compared with rice grain and husk wine (P<0.05). From the sensory evaluation including appearance, odor, taste and overall liking, the scores of rice grain and paddy wines were moderate, while the lowest scores in all attributes was observed in husk wine (P<0.05). Rice grain, paddy and husk wines obtained were amber in color (L*=10.11-16.27, a*=8.07-14.91, b*=10.8-12.18). Thus, the changes of quality, total phenolic contents and antioxidant activity of wine during fermentation were governed by raw material used and fermentation time. Additionally, Sangyod rice grain and paddy could be used as potential raw material for wine production and the wines obtained could be served as potential drinks for health, since containing bioactive compound as antioxidant.


2019 ◽  
Vol 82 (1) ◽  
Author(s):  
Mohamad Sufian So'aib ◽  
Ku Halim Ku Hamid ◽  
Jailani Salihon ◽  
Huey Ling Tan

The spontaneous fermentation was carried out on Carica papaya leaf (CPL) in view of its potential improvement on antioxidant functionality and cultivation of lactic acid bacteria. The effect of the spontaneous fermentation on the total phenolic content and antioxidant activity of CPL, as well as biodiversity profiling were evaluated in this study. Total phenolic content and antioxidant capacity of the fermented CPL were 31.14 mg GAE g-1 and 405.8 mM TE g-1 respectively, higher than the unfermented CPL (5.71 mg GAE/g and 130.5 mM TE g-1) respectively. Microbial community was predominantly lactic acid bacteria (LAB) and yeasts, both populated at 104 to 108 CFU/mL during most part of the fermentation. Presumptive Enterobacteriaceae showed up briefly at the onset of the fermentation before disappearing. PCR-DGGE fingerprinting revealed Lactobacillus plantarum (Lb. plantarum) as the sole dominant bacterial species. More diverse yeasts community was detected by PCR-DGGE where succession of Zygosaccharomyces, Saccharomyces, Candida and Aspergillus genera were detected along fermentation time. Spontaneous fermentation successfully enhanced the total phenolic content and antioxidant capacity of the CPL. The cultivation of lactic acid bacteria was indicated by the presence of Lb. plantarum, whereas the disappearance of Enterobacteriaceae conferred a safe consumption of the fermented CPL.


2021 ◽  
Vol 2 (4) ◽  
pp. 576-599
Author(s):  
Andromachi Tzani ◽  
Styliani Kalafateli ◽  
Grigorios Tatsis ◽  
Maria Bairaktari ◽  
Ioanna Kostopoulou ◽  
...  

The extraction of valuable phytochemicals from natural sources is an important and constantly evolving research area. Zingiber officinale Roscoe (ginger) contains high amounts of bioactive phytochemicals, which are desirable due to their significant properties. In this work, the ability of different natural deep eutectic solvents (NaDESs) to serve as green solvents for the preparation of high added value extracts from ginger is explored, in combination with ultrasound assisted extraction. The method was optimized by applying a response surface methodology using the NaDES Bet/La/W (1:2:2.5). Three independent variables, namely the extraction time, ultrasound power and NaDES-to-dry-ginger ratio, were investigated by employing a 17-run three-level Box–Behnken Design (BBD) in order to study the correlation between the extraction conditions and the quality of the obtained extracts. The optimum conditions (in order to achieve simultaneously maximum total phenolic content and antioxidant activity), were found to be 23.8 min extraction time, 60 Watt and NaDES/ginger 25:1 w/w. In the optimum conditions the DPPH radical scavenging ability of the extracts was found to reach IC50 = 18.16 mg/mL after 120 min, whereas the TPC was 20.10 ± 0.26 mg GAE/g of dry ginger. The green methodology was also compared with the extraction using conventional solvents. All the obtained extracts were evaluated for their antioxidant activity and their total phenolic content, while the extract derived by the optimum extraction conditions was further investigated for its ability to bind to calf thymus DNA (ctDNA).


Planta Medica ◽  
2016 ◽  
Vol 81 (S 01) ◽  
pp. S1-S381
Author(s):  
MA Ghareeb ◽  
T Mohamed ◽  
AM Saad ◽  
LA Refahy ◽  
MA Sobeh ◽  
...  

2019 ◽  
pp. 49-59
Author(s):  
Nu Linh Giang Ton ◽  
Thi Hoai Nguyen ◽  
Quoc Hung Vo

Avocado peel has been considered as a potential source of natural antioxidants in which phenolics are among the most important compounds. Therefore, this study aims to optimize the extraction process of phenolics using response surface methodology and evaluate the corresponding antioxidant activity. From the quadratic model, the optimal condition was determined including the ethanol concentration 54.55% (v/v), the solvent/solute ratio 71.82/1 (mL/g), temperature 53.03 oC and extraction time 99.09 min. The total phenolic content and the total antioxidant capacity at this condition with minor modifications were 26,74 ± 0,04 (mg GAE/g DW) and 188.06 ± 1.41 (mg AAE/g DW), respectively. The significant correlation between total phenolic content and total antioxidant capacity was also confirmed. Key words: response surface methodology, central composite rotatable design, total phenolic content, total antioxidant capacity, avocado peel


2020 ◽  
Vol 50 (3) ◽  
pp. 460-469
Author(s):  
Damir Zyaitdinov ◽  
Alexandr Ewteew ◽  
Anna Bannikova

Introduction. Bioactive compounds are a very popular topic of modern food science, especially when it concerns obtaining polyphenols from cereals. The antiradical, antioxidant, and anti-inflammatory properties of these ingredients allow them to inhibit and prevent coronary, artery, and cardiovascular diseases, as well as several types of cancer. Encapsulation is an effective technology that protects bioactive ingredients during processing and storage. In addition, it also prevents any possible interaction with other food constituents. The research objective was to obtain effective tools of controlled delivery of bioactive compounds. The study featured whey protein as a wall material in combination with maltodextrin to encapsulate the bioactives from oat bran. Study objects and methods. The processed material was oat bran. The technology of its biotransformation was based on ultrasound processing and enzymatic hydrolysis. The antioxidant properties were determined using a coulometer of Expert – 006-antioxidants type (Econix-Expert LLC, Moscow, Russia). Separation and quantitative determination of extract were followed using a Stayer HPLC device (Akvilon, Russia) and a system column Phenomenex Luna 5u C18(2) (250×4.6 mm). The total phenolic content was measured by a modified Folin-Ciocalteu method. To prepare microcapsules, whey protein concentrate (WPC) and maltodextrin (MD) solutions were mixed at ratios 6:4, 4:6, and 5:5. After that, the mixes were treated by ultrasonication and 10% w/w of guar gum solution as double wall material. The encapsulation efficiency (EE) was determined as a ratio of encapsulated phenolic content to total phenolic content. A digestion protocol that simulates conditions of the human gastric and intestinal tract was adapted to investigate the release kinetics of the extracts. Results and discussion. Ferulic acid is the main antioxidant in cereals. Its amount during extraction was consistent with published data: 9.2 mg/mL after ultrasound exposure, 9.0 mg/mL after enzymatic extraction, and 8.6 mg/mL after chemical treatment. The antioxidant activity of the obtained polyphenols was quite high and reached 921 cu/mL. It depended on the concentration of the preparation in the solution and the extraction method. The polyphenols obtained by ultrasonic exposure and enzyme preparations proved to have a more pronounced antioxidant activity. The highest EE (95.28%) was recorded at WPC:MD ratio of 60:40. In vitro enzymatic hydrolysis protocol simulating digestion in the gastrointestinal tract was used to study the effect of capsule structural characteristics on the kinetics of polyphenol release. The percentage of o polyphenols released from capsules ranged from 70% to 83% after two hours of digestion, which confirmed the effectiveness of microencapsulation technology. Conclusion. The research confirmed the possibility of using polyphenols obtained by the biotechnological method from oat bran as functional ingredients. Eventually, they may be used in new functional products with bifidogenic properties. Whey protein can be used to encapsulate polyphenols as the wall material of microcapsules.


2020 ◽  
Vol 16 (3) ◽  
pp. 391-396
Author(s):  
Huma Mukhtar ◽  
Amir Gull ◽  
Tariq A. Ganaie ◽  
Sajad A. Rather ◽  
Farooq A. Masoodi ◽  
...  

Background: The present investigation was carried to develop amaranth based wheat flour bread. Products were developed by using different levels of amaranth flour and wheat flour in the ratio of 0:100,5:95, 10:90 and 15:85 respectively. Methods: Physico-chemical, antioxidant activity, total phenolic content and physical properties of amaranth supplemented bread were evaluated. Results: Results revealed an increase in moisture content from31.41 -33.35%, ash content 0.95- 1.52%, protein content 12.19% -13.23%, fat content 2.21% -2.81% and crude fiber 1.13-1.74%, and decrease in nitrogen free extract, alkali water retention capacity 52.11-47.35% and 137.66-112.00% respectively. Also it was observed that amaranth flour supplemented bread showed decrease in total phenolic content, antioxidant activity and FRAP assay with increase in substitution level. Color evaluation showed increase in L* and a* value of bread crust, while as bread crumb shows decrease in b* and L* value respectively. Nutritional evaluation revealed that among the samples tested 85% wheat flour and 15% amaranth flour supplemented bread was rated best as it was also evident from nutritional analysis. Conclusion: Maximum substitution of wheat flour with amaranth flour were 10% in terms of desirable bread quality attributes. The composite breads would serve as functional food, because of its high nutritional value than whole-wheat bread.


Sign in / Sign up

Export Citation Format

Share Document