scholarly journals Improving the mechanical performance of a resistance spot welded 1200 MPa TBF steel

Author(s):  
Manfred Stadler ◽  
Ronald Schnitzer ◽  
Martin Gruber ◽  
Christina Hofer

Abstract In the present work different approaches to improve the mechanical properties of a resistance spot welded 1200 MPa transformation induced plasticity-aided bainitic ferrite steel are evaluated. An extension of the welding time results in coarsening of the microstructure of the outer fusion zone and the maximum force derived by the cross tension strength test did not improve significantly. A temper pulse after a long cooling time leads to pronounced softening of the fusion zone, as determined by hardness mapping, which resulted in enhanced weld properties. A recrystallization pulse modifies the shape of the prior austenite grains at the outer fusion zone, which was visualized with electron backscatter diffraction. This also resulted in a significant improvement of maximum force. For all approaches the failure mode improved, which can be attributed to an increased fraction of high angle grain boundaries at the edge of the fusion zone.

Metals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 270
Author(s):  
Manfred Stadler ◽  
Ronald Schnitzer ◽  
Martin Gruber ◽  
Katharina Steineder ◽  
Christina Hofer

In the present work, the influence of the cooling time on the mechanical performance, hardness, and microstructural features of a double pulse resistance spot welded medium-Mn steel are investigated. Curves of the electrical resistance throughout the welding revealed that the cooling time strongly influences the heat generation during the second pulse. A second pulse after a short cooling time re-melts the center, and heat treats the edge of the primary fusion zone. This desired in-process heat treatment leads to a modification of the cast-like martensitic structure by recrystallization illustrated by electron backscatter diffraction measurements and to a homogenization of manganese segregations, visualized by energy-dispersive X-ray spectroscopy, which results in an enhanced mechanical performance during the cross tension strength test. In contrast, during excessively long cooling times, the resistance drops to a level where the heat generation due to the second pulse is too low to sufficiently re-heat the edge of the primary FZ. As a consequence, the signs of recrystallization disappear, and the manganese segregations are still present at the edge of the fusion zone, which leads to a deterioration of the mechanical properties.


Processes ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 1021
Author(s):  
Yunzhao Li ◽  
Huaping Tang ◽  
Ruilin Lai

Resistance spot welded 1.2 mm (t)-thick 1400 MPa martensitic steel (MS1400) samples are fabricated and their microstructure, mechanical properties are investigated thoroughly. The mechanical performance and failure modes exhibit a strong dependence on weld-nugget size. The pull-out failure mode for MS1400 steel resistance spot welds does not follow the conventional weld-nugget size recommendation criteria of 4t0.5. Significant softening was observed due to dual phase microstructure of ferrite and martensite in the inter-critical heat affected zone (HAZ) and tempered martensite (TM) structure in sub-critical HAZ. However, the upper-critical HAZ exhibits obvious higher hardness than the nugget zone (NZ). In addition, the mechanical properties show that the cross-tension strength (CTS) is about one quarter of the tension-shear strength (TSS) of MS1400 weld joints, whilst the absorbed energy of cross-tension and tension-shear are almost identical.


Metals ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 778 ◽  
Author(s):  
Omid Hajizad ◽  
Ankit Kumar ◽  
Zili Li ◽  
Roumen H. Petrov ◽  
Jilt Sietsma ◽  
...  

Wheel–rail contact creates high stresses in both rails and wheels, which can lead to different damage, such as plastic deformation, wear and rolling contact fatigue (RCF). It is important to use high-quality steels that are resistant to these damages. Mechanical properties and failure of steels are determined by various microstructural features, such as grain size, phase fraction, as well as spatial distribution and morphology of these phases in the microstructure. To quantify the mechanical behavior of bainitic rail steels, uniaxial tensile experiments and hardness measurements were performed. In order to characterize the influence of microstructure on the mechanical behavior, various microscopy techniques, such as light optical microscopy (LOM), scanning electron microscopy (SEM) and electron backscatter diffraction (EBSD), were used. Three bainitic grades industrially known as B360, B1400 plus and Cr-Bainitic together with commonly used R350HT pearlitic grade were studied. Influence of isothermal bainitic heat treatment on the microstructure and mechanical properties of the bainitic grades was investigated and compared with B360, B1400 plus, Cr-Bainitic and R350HT in as-received (AR) condition from the industry. The results show that the carbide-free bainitic steel (B360) after an isothermal heat treatment offers the best mechanical performance among these steels due to a very fine, carbide-free bainitic microstructure consisting of bainitic ferrite and retained austenite laths.


Sign in / Sign up

Export Citation Format

Share Document