scholarly journals Compressive loading experiment of non-roasted bulk oil palm kernels at varying pressing factors

2018 ◽  
Vol 32 (3) ◽  
pp. 357-363 ◽  
Author(s):  
Abraham Kabutey ◽  
David Herak ◽  
Cestmir Mizera ◽  
Petr Hrabe

Abstract Compression testing of non-roasted bulk oil palm kernels at different processing factors was performed using a universal compression testing machine and a pressing vessel witha plunger. The purpose of the research was to describe regression models of deformation, deformation energy and percentage kernel oil depending on force, speed and vessel diameter. The tested compression forces were 100, 125, 150, 175 and 200 kN, while the speeds were 5, 10, 15, 20 and 25 mm min−1. Three pressing vessels of diameter 60, 80 and 100 mm were used. Samples were compressed at an initial height of 60 mm. For varying forces and vessel diameters at a constant speed of 5 mm min−1, the values of deformation, deformation energy and percentage kernel oil ranged from 28.47±0.89 to 37.45±0.11 mm, 796±0.82 to 1795±49.01 J and 7.33±0.26 to 25.67±0.39%. At a constant force of 200 kN for different speeds and vessel diameters; the aforementioned determined parameters also ranged from 31.91±1.61 to 37.63±1.21 mm, 1012±26.76 to 1795±49.01 J and 14.66±0.42 to 24.98±1.37%. The results were statistically significant (p<0.05) or (F-ratio>F-critical), with high coefficients of determination between 0.74 and 0.99. Thus, higher force at specific speed may be needed to maximally recover kernel oil.

2017 ◽  
Vol 31 (3) ◽  
pp. 351-356 ◽  
Author(s):  
Abraham Kabutey ◽  
David Herak ◽  
Rostislav Choteborsky ◽  
Čestmír Mizera ◽  
Riswanti Sigalingging ◽  
...  

AbstractThe study described the oil point and mechanical properties of roasted and unroasted bulk oil palm kernels under compression loading. The literature information available is very limited. A universal compression testing machine and vessel diameter of 60 mm with a plunger were used by applying maximum force of 100 kN and speed ranging from 5 to 25 mm min−1. The initial pressing height of the bulk kernels was measured at 40 mm. The oil point was determined by a litmus test for each deformation level of 5, 10, 15, 20, and 25 mm at a minimum speed of 5 mmmin−1. The measured parameters were the deformation, deformation energy, oil yield, oil point strain and oil point pressure. Clearly, the roasted bulk kernels required less deformation energy compared to the unroasted kernels for recovering the kernel oil. However, both kernels were not permanently deformed. The average oil point strain was determined at 0.57. The study is an essential contribution to pursuing innovative methods for processing palm kernel oil in rural areas of developing countries.


Fuel ◽  
2021 ◽  
Vol 305 ◽  
pp. 121569
Author(s):  
Chao Jin ◽  
Xin Liu ◽  
Tianyun Sun ◽  
Jeffrey Dankwa Ampah ◽  
Zhenlong Geng ◽  
...  

2021 ◽  
Author(s):  
Nick Pasiecznik

Abstract E. guineensis, the oil palm or African oil palm, is native to equatorial Africa, although the only other species in the genus (E. oleifera) is indigenous to South and Central America. E. guineensis, however, is the major economic species: fruits of E. oleifera have a much lower oil content and are used only locally (Westphal and Jansen, 1989). However, E. guineensis was introduced into South America during the time of the slave trade, and naturalized groves are reported in coastal areas of Brazil near Bélem. In the mid-1800s it was introduced to South-East Asia via the Botanic Gardens in Bogor, Indonesia. The first oil-palm estates in Sumatra (since 1911) and Malaysia (since 1917) used plant material from second- and third-generation descendants of the original Bogor palms, from which one of the breeding populations, the Deli Dura, is derived (Westphal and Jansen, 1989). After soyabean, E. guineensis is the second most important crop worldwide for the supply of edible vegetable oil. Palm oil kernel, for example, is a major agricultural export from Malaysia, and South-East Asia is the main area of production.E. guineensis yields two types of oil: palm oil from the fleshy mesocarp, and palm-kernel oil from the kernel, in a volume ratio 10:1. Most palm oil is used in food preparation (margarines, and industrial frying oils used to prepare snack foods, etc.). Palm-kernel oil is similar in composition and properties to coconut oil, and is used in confectionery, where its higher melting point is particularly useful. It is also used in the manufacture of lubricants, plastics, cosmetics and soaps. The oil palm is a monoecious, erect, single-stemmed tree usually 20-30 m high. The root system is shallow and adventitious, forming a dense mat in the top 35 cm of the soil. The main stem is cylindrical, up to 75 cm diameter. E. guineensis palm fronds are not as suitable for thatching as other palm species, as the leaflets attach to the rachis at two angles. The oil palm is indigenous to the lowland humid tropics, and thrives on a good moisture supply and relatively open conditions. It can tolerate fluctuating water-tables with periods of standing water, although continuously flooded conditions are unsuitable. Sites often selected as suitable for oil palm are swamps, riverbanks, or sites considered too moist for tropical rain forest trees. Rainfall is often the major factor limiting production in plantations: highest yields occur where rainfall is evenly distributed throughout the year, with an optimum of 150 mm per month (Westphal and Jansen, 1989). Oil palms can grow on a variety of soil types, from sandy soils to lateritic red and yellow podzols, young volcanic soils, alluvial clays and peat soils; water-holding capacity appears to be the most important soil criterion. It is a demanding crop in terms of soil nutrients. The oil palm also has potential for incorporation into agroforestry practices. Traditional oil palm management in some areas of West Africa often incorporated both pure oil palm groves (perhaps selectively retained), scattered oil palms within temporary fields, and unexploited oil palms in mixed forest (Gupta, 1993). Harvesting of fruits usually starts about 2½ years after field planting; bunches ripen throughout the year and so harvesting usually takes place at intervals of 2 to 3 weeks in any particular area. Because oil palm is so responsive to environmental conditions, yields may vary greatly. However, over the lifetime of a palm tree, yields generally rise to a maximum in the first 6-8 years (after field planting), and will subsequently decline slowly. In Malaysia and Sumatra, well-managed plantations yield between 24 and 32 tonnes/hectare of fruit bunches; the oil yield from this will be between 4.8 and 7 tonnes/hectare. Oil palm plantations are often regarded as a better use of the land than annual food crops in humid tropical areas where soils are prone to leaching: the plantations provide continuous ground cover, and the palm canopy helps protect against soil erosion. Oil palm stems are increasingly used as a raw material for paper and composite board production. This area has big prospects in wood-based industries. It is recommended that more research is undertaken into the properties and utilization. Propagation techniques, the management of pests and diseases, and genetic resources are other areas in which studies could usefully be undertaken.


2022 ◽  
Vol 1048 ◽  
pp. 387-395
Author(s):  
Joel Joseph Shelton ◽  
Mohammad Izazs ◽  
C. Daniel ◽  
A. Arun Solomon

Nowadays, one of the fastest growing technique is an Insulated Concrete Form (ICF). It has advantages like cost-effective, less maintenance, soundproof, energy-efficient, waterproof and disaster-resistant. ICF wall panels are made by interlocking Fibre Cement Board (FCB) sheet which poured in placed concrete. In this study, the behaviour of the ICF wall panel under axial compression is examined with experimental and analytical methods. ICF wall panels cast with various thickness and dense FCB are tested under axial compression. ICF panels with 1.2gm3/cm dense FCB with changing width of 6mm and 10mm were casted for experimental analysis. The experiments were carried out in an universal testing machine with the capacity of 600 kN. The maximum peak load of 540 kN is observed in FCB of 10mm thick and the maximum displacement of 13mm is observed in FCB80 at the peak load. An analytical investigation is carried with Euler’s crippling load equation and an average variation of 12% is observed between analytical and experimental results. It is concluded that the ICF system of construction provides desirable plastic behaviour against axial compressive loading. Hence ICF is recommended for construction to get the maximum benefits of the wall while it reaches ultimate strain.


2008 ◽  
Vol 25 (No. 4) ◽  
pp. 174-181 ◽  
Author(s):  
K.G. Berger

The results of nutritional research on fatty acids have led to the recommendation that the level of trans-fatty acids in foods (the products of partial hydrogenation of oils) should be reduced as far as possible. Palm oil and palm kernel oil are readily available and economical sources of solid fat. Formulae using oils to make fats for the main types of food products are reviewed.


2017 ◽  
Vol 892 ◽  
pp. 89-96 ◽  
Author(s):  
Thorsten Henseler ◽  
Madlen Ullmann ◽  
Grzegorz Korpala ◽  
Klaudia Klimaszewska ◽  
Rudolf Kawalla ◽  
...  

This article demonstrates the difference in the flow curves of an AZ31 magnesium alloy and S235JR structural steel wire caused by non-linear strain rates during uniaxial tensile and compression testing at elevated temperatures. Throughout tensile deformation, the traverse velocity of the testing machine has to be adapted according to the current elongation of the specimen, thus accelerating, to ensure a constant strain rate during the admission of the stress-strain curve. The equivalent is necessary during compression testing, where the traverse velocity of the testing machine needs to decelerate ensuring a constant strain rate. Nevertheless, tensile and compression tests are performed with constant traverse velocity, which lead to divergent flow curves in comparison to deformation controlled traverse velocities. The results of the research show the difference in flow behaviour of magnesium and steel wire, when the temperature and strain rate are varied in conjunction with constant and deformation controlled traverse velocities.


Sign in / Sign up

Export Citation Format

Share Document