An Experimental and Numerical Study on Orthogonal Machining of Ti–6Al–4V Alloy

2016 ◽  
Vol 16 (4) ◽  
pp. 209-213 ◽  
Author(s):  
Vijayan Krishnaraj

AbstractIn this work experimental and numerical result of high speed orthogonal machining of Ti-6AL-4V titanium alloy is presented. High speed orthogonal turning is carried in a lathe using uncoated carbide inserts under dry cutting conditions. Experimental study is carried out by focusing on the measurement of cutting force and cutting temperature. The experimentation is supplemented by simulations from 2D finite element model (FEM) using Third Wave AdvantEdge software. The measured cutting forces and temperature are compared with FEA results. The major factors affecting the machinability of titanium alloy such as spindle speed, feed and cutting tool rake angles are investigated. Numerical results agree with the experimental results at higher speeds and feed levels. These results can be used for further study in high speed turning of titanium alloys.

Author(s):  
Xiangqin Zhang ◽  
Xueping Zhang ◽  
A. K. Srivastava

To predict the cutting forces and cutting temperatures accurately in high speed dry cutting Ti-6Al-4V alloy, a Finite Element (FE) model is established based on ABAQUS. The tool-chip-work friction coefficients are calculated analytically using the measured cutting forces and chip morphology parameter obtained by conducting the orthogonal (2-D) machining tests. It reveals that the friction coefficients between tool-work are 3∼7 times larger than that between tool-chip, and the friction coefficients of tool-chip-work vary with feed rates. The analysis provides a better reference for the tool-work-chip friction coefficients than that given by literature empirically regardless of machining conditions. The FE model is capable of effectively simulating the high speed dry cutting process of Ti-6Al-4V alloy based on the modified Johnson-Cook model and tool-work-chip friction coefficients obtained analytically. The FE model is further validated in terms of predicted forces and the chip morphology. The predicted cutting force, thrust force and resultant force by the FE model agree well with the experimentally measured forces. The errors in terms of the predicted average value of chip pitch and the distance between chip valley and chip peak are smaller. The FE model further predicts the cutting temperature and residual stresses during high speed dry cutting of Ti-6Al-4V alloy. The maximum tool temperatures exist along the round tool edge, and the residual stress profiles along the machined surface are hook-shaped regardless of machining conditions.


2011 ◽  
Vol 219-220 ◽  
pp. 1211-1214
Author(s):  
Wei Jiang

Finite element simulation is an efficient method for studying factors affecting weld-induced residual stress distributions. In this paper, a validated three-dimensional finite element model consisting of sequentially coupled thermal and structural analyses was developed. Three possible symmetrical welding sequences, i.e. one-welder, two-welder and four-welder sequence, which were perceived to generate the least distortion in actual welding circumstances, were proposed and their influences on the residual stress fields in a thick-walled tee joint were investigated. Appropriate conclusions and recommendations regarding welding sequences are presented.


2012 ◽  
Vol 580 ◽  
pp. 7-11
Author(s):  
Yue Zhang ◽  
Li Han ◽  
You Jun Zhang ◽  
Xi Chuan Zhang

The machining process of titanium alloys always need special control by using coolant and lubricant as it is one of the difficult-to-cut materials. The cutting experiments are carried out based on green cooling and lubricating technology. To achieve green cutting of titanium alloy Ti-6Al-4V with water vapor cooling and lubricating, a minitype generator is developed. Compared to dry and wet cutting, the using of water vapor decreases the cutting force and the cutting temperature respectively; enhances the machined surface. And it can help to chip forming and breaking. Water vapor application also improves Ti-6Al-4V machinability. The excellent cooling and lubricating action of water vapor could be summarized that water molecule has polarity, small diameter and high speed, can be easily and rapidly to proceed adsorption in the cutting zone. The results indicate that the using of water vapor has the potential to attain the green cutting of titanium alloy.


2013 ◽  
Vol 81 (5) ◽  
Author(s):  
Y. Shi ◽  
P. D. Wu ◽  
D. J. Lloyd ◽  
D. Y. Li

An elastic-viscoplastic based finite element model has been developed to study the necking behavior of tube expansion for rate independent materials, rate dependent monolithic materials, and laminated materials during dynamic loading. A numerical study shows that for rate independent materials, the dynamic loading will not delay diffused necking but localized necking; for rate dependent materials, high strain rate sensitivity can significantly delay the onset of localized necking for both monolithic and laminated sheets and affect the multiple-neck formation in high-speed dynamic loading. The model also shows that a higher volume fraction of a clad layer with positive rate sensitivity material in a laminated sheet improves the sheet ductility.


Author(s):  
Shohei Takemoto ◽  
Masahiko Sato ◽  
Takashi Matsuno ◽  
Kanae Yamamoto

2008 ◽  
Author(s):  
P. Zhang ◽  
X. Fu ◽  
R. Z. Wang

Application of liquid nitrogen to cooling is widely used in such fields as cooling of the high temperature superconducting devices, cryosurgery and so on. In order to have a full understanding of the flow and heat transfer characteristics of liquid nitrogen in micro-tube, high-speed digital photography was employed to acquire the typical flow boiling patterns of liquid nitrogen in micro-tubes in the experiments. The main flow patterns were bubbly flow, slug flow, churn flow and annular flow. And the confined bubbly flow and mist flow were also observed. These flow patterns were characterized on the flow regime maps. And the surface tension force and the size of the tube diameter were found to be the major factors affecting the flow pattern transitions.


2011 ◽  
Vol 314-316 ◽  
pp. 1258-1261
Author(s):  
Lian Qing Ji ◽  
Kun Liu

The history and application of the FEA are briefly presented in this paper. Several key technologies such as the building of material model, the establishment of the chip - tool friction model as well as meshing are described. Taking the high-speed cutting of titanium alloy (Ti - 10V - 2Fe - 3Al) as an example , reasonable cutting tools parameters are determined by simulating the influences of cutting temperature, cutting force on the tools parameters using FEA.


2012 ◽  
Vol 170-173 ◽  
pp. 1491-1496 ◽  
Author(s):  
Xin Wang ◽  
De Shen Zhao ◽  
Meng Lin Xu

Based on Dalian subway line 2 from Chun-guang street station to Xiang-gong street station,the three dimensional finite element model was established using FLAC3D software , the shield excavated surface against the pressure, the stress release, the shield tail escape and grouting. The numerical result indicated that the pipeline displacement increases gradually with the advance of the tunnel excavation. When one-sided tunnel excavation is carried out, the largest displacement is located at the tunnel axis, the settling curve basically conforms to the normal distribution curve with the unimodal characteristic. The excavation of right-side tunnel is disadvantageous to the left-side tunnel. The analysis indicated that the pipeline is in a secure state. The work in this paper provided theoretical basis and the practical guidance to this project.


2017 ◽  
Vol 18 (10) ◽  
pp. 1387-1392 ◽  
Author(s):  
Hui-Bo He ◽  
Hua-Ying Li ◽  
Jun Yang ◽  
Xian-Yin Zhang ◽  
Qi-Bin Yue ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document