scholarly journals Temperature changes accompanying signal propagation in axons

2019 ◽  
Vol 44 (3) ◽  
pp. 277-284 ◽  
Author(s):  
Kert Tamm ◽  
Jüri Engelbrecht ◽  
Tanel Peets

Abstract In this paper mathematical models are formulated in order to simulate heat production and corresponding temperature changes which accompany the propagation of an action potential. Based on earlier experimental results, several models are proposed. Together with the earlier system of coupled differential equations derived by the authors for describing the electrical and mechanical components of signaling in nerve fibers, the novel results permit to cast the whole process of signaling into one system. The emphasis is on the mathematical description of coupling forces. The numerical results are qualitatively similar to experiments.

Author(s):  
K. Isakov ◽  
K.T. Osmonov ◽  
T. Toktakunov

The article examines the proposed modes of work of the project being developed to create a bulldozer-loader, adapted for more efficient maintenance, repair and construction of high-altitude and other roads. Mathematical models are proposed that describe multi-stage successive movements of one or more functional mechanisms corresponding to different modes of work. Nonlinear systems of ordinary differential equations of the second order with initial conditions, for numerical integration of which the Adams method is used, are presented.


1979 ◽  
Vol 205 (1160) ◽  
pp. 347-367 ◽  

A study has been made of the temperature changes associated with the passage of a single impulse in the non-myelinated fibres of the garfish olfactory nerve: and the time course of these temperature changes has been compared with the time course of the electrical events during the action potential. As in other non-myelinated nerves studied the observed temperature changes result from a biphasic initial heat production con­sisting of a transient evolution of heat (the positive heat) followed by a a rapid heat reabsorption (referred to as the negative heat). There is no evidence of any additional phases of initial heat production. At 0 °C the measured positive initial heat is 224 μcal/g impulse (937 μJ/g impulse); and the corresponding negative initial heat is 230 μcal/g impulse (962 μJ/g impulse). The residual initial heat is very small, being about ─6 μcal/g impulse (─25 μJ/g impulse). In the range 0─ 10 °C there is no significant effect of temperature on the magnitude of either the positive or the negative phases of heat production. The experimental thermal records were analysed to determine the true time course of the tem­perature changes in the nerve undistorted by the recording system. The time course of the temperature changes does not fit with that of the transmembrane voltage change as represented by the monophasic com­pound action potential recorded externally from the same point on the nerve. A better fit is obtained if the temperature changes are compared with the square of the voltage change in accordance with the view that the heat derives almost wholly from free energy changes and entropy changes in the membrane capacity. The best fit is obtained if it is assumed that the membrane potential does not discharge to zero during the action potential but that at the peak of the action potential the charge (and hence the p. d.) across the membrane capacity retains about 24% of its resting value.


Author(s):  
Gerhard Oertel

Students of geology who may have only a modest background in mathematics need to become familiar with the theories of stress, strain, and other tensor quantities, so that they can follow, and apply to their own research, developments in modern, quantitative geology. This book, based on a course taught by the author at UCLA, can provide the proper introduction. Included throughout the eight chapters are 136 complex problems, advancing from vector algebra in standard and subscript notations, to the mathematical description of finite strain and its compounding and decomposition. Fully worked solutions to the problems make up the largest part of the book. With their help, students can monitor their progress, and geologists will be able to utilize subscript and matrix notations and formulate and solve tensor problems on their own. The book can be successfully used by anyone with some training in calculus and the rudiments of differential equations.


Cells ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1516
Author(s):  
Daniel Gratz ◽  
Alexander J Winkle ◽  
Seth H Weinberg ◽  
Thomas J Hund

The voltage-gated Na+ channel Nav1.5 is critical for normal cardiac myocyte excitability. Mathematical models have been widely used to study Nav1.5 function and link to a range of cardiac arrhythmias. There is growing appreciation for the importance of incorporating physiological heterogeneity observed even in a healthy population into mathematical models of the cardiac action potential. Here, we apply methods from Bayesian statistics to capture the variability in experimental measurements on human atrial Nav1.5 across experimental protocols and labs. This variability was used to define a physiological distribution for model parameters in a novel model formulation of Nav1.5, which was then incorporated into an existing human atrial action potential model. Model validation was performed by comparing the simulated distribution of action potential upstroke velocity measurements to experimental measurements from several different sources. Going forward, we hope to apply this approach to other major atrial ion channels to create a comprehensive model of the human atrial AP. We anticipate that such a model will be useful for understanding excitability at the population level, including variable drug response and penetrance of variants linked to inherited cardiac arrhythmia syndromes.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Ahmed S. Elgazzar

Abstract The novel COVID-19 pandemic is a current, major global health threat. Up till now, there is no fully approved pharmacological treatment or a vaccine. Also, its origin is still mysterious. In this study, simple mathematical models were employed to examine the dynamics of transmission and control of COVID-19 taking into consideration social distancing and community awareness. Both situations of homogeneous and nonhomogeneous population were considered. Based on the calculations, a sufficient degree of social distancing based on its reproductive ratio is found to be effective in controlling COVID-19, even in the absence of a vaccine. With a vaccine, social distancing minimizes the sufficient vaccination rate to control the disease. Community awareness also has a great impact in eradicating the virus transmission. The model is simulated on small-world networks and the role of social distancing in controlling the infection is explained.


2018 ◽  
Vol 16 ◽  
pp. 01005
Author(s):  
Felix Sadyrbaev

Mathematical models of artificial networks can be formulated in terms of dynamical systems describing the behaviour of a network over time. The interrelation between nodes (elements) of a network is encoded in the regulatory matrix. We consider a system of ordinary differential equations that describes in particular also genomic regulatory networks (GRN) and contains a sigmoidal function. The results are presented on attractors of such systems for a particular case of cross activation. The regulatory matrix is then of particular form consisting of unit entries everywhere except the main diagonal. We show that such a system can have not more than three critical points. At least n–1 eigenvalues corresponding to any of the critical points are negative. An example for a particular choice of sigmoidal function is considered.


2014 ◽  
Vol 112 (5) ◽  
pp. 1025-1039 ◽  
Author(s):  
Jérôme Bourien ◽  
Yong Tang ◽  
Charlène Batrel ◽  
Antoine Huet ◽  
Marc Lenoir ◽  
...  

Sound-evoked compound action potential (CAP), which captures the synchronous activation of the auditory nerve fibers (ANFs), is commonly used to probe deafness in experimental and clinical settings. All ANFs are believed to contribute to CAP threshold and amplitude: low sound pressure levels activate the high-spontaneous rate (SR) fibers, and increasing levels gradually recruit medium- and then low-SR fibers. In this study, we quantitatively analyze the contribution of the ANFs to CAP 6 days after 30-min infusion of ouabain into the round window niche. Anatomic examination showed a progressive ablation of ANFs following increasing concentration of ouabain. CAP amplitude and threshold plotted against loss of ANFs revealed three ANF pools: 1) a highly ouabain-sensitive pool, which does not participate in either CAP threshold or amplitude, 2) a less sensitive pool, which only encoded CAP amplitude, and 3) a ouabain-resistant pool, required for CAP threshold and amplitude. Remarkably, distribution of the three pools was similar to the SR-based ANF distribution (low-, medium-, and high-SR fibers), suggesting that the low-SR fiber loss leaves the CAP unaffected. Single-unit recordings from the auditory nerve confirmed this hypothesis and further showed that it is due to the delayed and broad first spike latency distribution of low-SR fibers. In addition to unraveling the neural mechanisms that encode CAP, our computational simulation of an assembly of guinea pig ANFs generalizes and extends our experimental findings to different species of mammals. Altogether, our data demonstrate that substantial ANF loss can coexist with normal hearing threshold and even unchanged CAP amplitude.


2018 ◽  
Vol 7 (3) ◽  
pp. 31
Author(s):  
Rosa Virginia Hernández ◽  
Luis Fernando Mariño ◽  
Mawency Vergel

En este artículo se presenta la caracterización del conocimiento semántico evidenciado por un grupo de estudiantes en la representación externa a problemas de ecuaciones diferenciales lineales de segundo orden como modelos matemáticos. El trabajo fue cuantitativo de tipo exploratorio y descriptivo utilizando un cuestionario en la recolección de información. El soporte teórico que dio sentido al estudio fue el modelo de dos etapas propuesto por Mayer R. para la resolución de problemas matemáticos, el ciclo de modelación bajo la perspectiva cognitiva según Borromeo Ferri y la teoría de las representaciones de Goldin y Kaput. La investigación se centró específicamente en la fase de representación del modelo. Entre los principales hallazgos se destaca que cada participante hace su propia representación externa a conceptos como: sistema masa-resorte, peso, masa, punto de equilibrio, constante de elasticidad, punto de equilibrio, ley de Hooke, fuerza amortiguadora, fuerza externa, ley de Newton, entre otros. Se evidencian también dificultades en el tránsito del lenguaje natural al lenguaje matemático y la representación externa de cada una de los signos, símbolos o expresiones matemáticas inmersas en el problema de palabra, debido a que el resolutor tiene que construir un modelo mental de la situación real y plasmarlo en un modelo matemático. Lo anterior pone de manifiesto la importancia que tiene el conocimiento semántico en la etapa de traducción cuando se intentan resolver problemas como situaciones reales a modelar.Palabras clave: resolución de problemas, ciclos de modelación, problemas de palabra, representaciones externas, conocimiento extra matemático, modelación matemática. AbstractThis article presents the characterization of the semantic knowledge evidenced by a group of students in the external representation to problems of second order linear differential equations as mathematical models. The work was quantitative exploratory and descriptive using a questionnaire in the collection of information. The theoretical support that gave meaning to the study was the two-stage model proposed by Mayer R. for solving mathematical problems, the modeling cycle under the cognitive perspective according to Borromeo Ferri and the theory of representations of Goldin and Kaput. The research focused specifically on the representation phase of the model. Among the main findings is that each participant makes his own external representation to concepts such as: mass-spring system, weight, mass, equilibrium point, constant of elasticity, equilibrium point, Hooke's law, damping force, external force, law of Newton, among others. Difficulties are also evident in the transition from natural language to mathematical language and the external representation of each of the signs, symbols or mathematical expressions involved in the word problem, because the resolver has to construct a mental model of the real situation and translate it into a mathematical model. This demonstrates the importance of semantic knowledge in the translation stage when trying to solve problems as real situations to be modeledKeywords: problem solving, modeling cycles, word problems, external representations, extra mathematical knowledge, mathematical modeling.ResumoEste artigo apresenta a caracterização do conhecimento semântico evidenciado por um grupo de estudantes na representação externa a problemas de equações diferenciais lineares de segunda ordem como modelos matemáticos. O trabalho foi quantitativo exploratório e descritivo usando um questionário na coleta de informações. O suporte teórico que deu sentido ao estudo foi o modelo de dois estágios proposto por Mayer R. para resolver problemas matemáticos, o ciclo de modelagem sob a perspectiva cognitiva de acordo com Borromeo Ferri e a teoria das representações de Goldin e Kaput. A pesquisa focalizou especificamente a fase de representação do modelo. Entre os principais achados, cada participante faz sua própria representação externa para conceitos como: sistema de massa-mola, peso, massa, ponto de equilíbrio, constante de elasticidade, ponto de equilíbrio, lei de Hooke, força de amortecimento, força externa, lei de Newton, entre outros. As dificuldades também são evidentes na transição da linguagem natural para a linguagem matemática e a representação externa de cada um dos signos, símbolos ou expressões matemáticas envolvidas na palavra problema, porque o resolvedor tem que construir um modelo mental da situação real e traduzi-lo para um modelo matemático. Isso demonstra a importância do conhecimento semântico na fase de tradução ao tentar resolver problemas como situações reais a serem modeladas. ______________________________________________________ Palavras-chave: resolução de problemas, ciclos de modelagem, problemas de palavra, representação externa, conhecimento extra matemático, modelagem matemática


2019 ◽  
Vol 7 (4) ◽  
pp. 288-293
Author(s):  
Miroslav Vasilev ◽  
Galya Shivacheva

Phase space is an approach for analysis of nonlinear differential equations. The graphical solutions that are obtained are convenient for qualitative assessment of the behavior of systems and processes. A comparative analysis of the pharmacokinetics of the antibiotic enrofloxacin administered intravenously in dogs and cats has been performed in the present study. The mathematical models that represent the change in blood plasma concentration of the two groups of animals are described by second-order differential equations. For the graphical representation of phase trajectories using the fluoroquinolone, the Mathcad program tools are used. The properties of the peculiar points are determined based on the received images.


Sign in / Sign up

Export Citation Format

Share Document