Stress and Deformation

Author(s):  
Gerhard Oertel

Students of geology who may have only a modest background in mathematics need to become familiar with the theories of stress, strain, and other tensor quantities, so that they can follow, and apply to their own research, developments in modern, quantitative geology. This book, based on a course taught by the author at UCLA, can provide the proper introduction. Included throughout the eight chapters are 136 complex problems, advancing from vector algebra in standard and subscript notations, to the mathematical description of finite strain and its compounding and decomposition. Fully worked solutions to the problems make up the largest part of the book. With their help, students can monitor their progress, and geologists will be able to utilize subscript and matrix notations and formulate and solve tensor problems on their own. The book can be successfully used by anyone with some training in calculus and the rudiments of differential equations.

2021 ◽  
Vol 887 ◽  
pp. 557-563
Author(s):  
D.M. Mordasov ◽  
M.D. Mordasov

The spreading process of drying and coalescing nanodispersion was simulated using the method of analogies. A mathematical description of the energy processes in the proposed physical model was obtained in the form of a system of differential equations of the first order. A transition function that describes the dynamics of the change in the contact angle when the nanodispersion drop spreads was obtained as a result of solving the system of differential equations. The physical meaning of the transition function coefficients was established. Based on the analysis of the ratio of the transition function coefficients, a theoretical justification for the results of experiments on choosing the optimal amount of desiccant introduced into styrene-acrylic nanodispersion was given.


Author(s):  
Yue Zhang

Abstract The stress-strain relationship of rubber materials manifests as hysteresis loops under finite strain. In this paper, some results from applying an integral formulation that encompasses a memory kernel of time and a nonlinear function of the strain to model extensions of rubber rods are presented. Various experimental data loops are studied. In addition, the author presents a graphical user interface that facilitates the modeling process.


1997 ◽  
Vol 64 (2) ◽  
pp. 440-442 ◽  
Author(s):  
S. J. Hollister ◽  
J. E. Taylor ◽  
P. D. Washabaugh

Finite strain elastostatics is expressed for general anisotropic, piecewise linear stiffening materials, in the form of a constrained minimization problem. The corresponding boundary value problem statement is identified with the associated necessary conditions. Total strain is represented as a superposition of variationally independent constituent fields. Net stress-strain properties in the model are implicit in terms of the parameters that define the constituents. The model accommodates specification of load fields as functions of a process parameter.


2021 ◽  
Vol I (81) ◽  
pp. 115-128
Author(s):  
Bohdan Drin ◽  
◽  
Iryna Drin ◽  
Svitlana Drin ◽  
◽  
...  

The practical task of economics lies in applying the methods of substantiating its decisions. For economics, the main method is the modeling of economic phenomena and processes and, above all, mathematical modeling, which has been stipulated by the presence of stable MATHEMATICAL METHODS, MODELS AND INFORMATION TECHNOLOGIES IN ECONOMY Issue I (81), 2021 117 quantitative patterns and the possibility of a formalized description of many economic processes. The economic-mathematical model contains a system of equations of linear and nonlinear units that promote a mathematical description of economic processes and phenomena, consists of a set of variables and parameters and serves to study these processes and control them. Dynamic models of the economy describe it in development, as well as provide a detailed description of technological methods of production. Mathematical description of dynamic models is carried out with the use of a system of differential equations (in models with continuous time), difference equations (in models with discrete time), as well as systems of algebraic equations. It is important that the investigation of various economic issues has led to the development of the mathematical apparatus. In linear algebra, productive matrices are caused by the studies of intersectoral balance, whereas mathematical programming arose in the course of researching the optimal plan for the distribution of limited resources. In a similar way, there emerged the theory of economic indices and econometrics, the theory of production functions and the theory of consumption, the theory of general economic balance and social welfare, the theory of optimal economic growth. The paper under studies deals with the dynamic economic behavior of two competing objects, whose mathematical model is a nonlinear nonlocal problem for a system of ordinary differential equations with variable coefficients and argument deviation. The dynamic mathematical model is based on the assumption that the volume of output of both firms is determined by such factors on which output depends linearly. The model under discussion includes nonlinear factors, which describe the level of distrust of the competitors and depend on the time of observations and production volumes in previous moments, because the latter significantly affect the production activities of the firm. Such mathematical models are called time-delayed models.


2019 ◽  
Vol 39 (2) ◽  
pp. 158-162
Author(s):  
N. A. Volkova ◽  
N. T. Katanaev

The work is aimed at solving problems related to dynamic market research with a limited number of participants and domestic factors, which are used in market volume, the release of the product and its price. Lists the mathematical description of "logistics functions" in the form of analyses and solutions of differential equations processes on the market of goods and services. Given the necessity of transition to multidimensional models of market.


1997 ◽  
Vol 119 (2) ◽  
pp. 81-84 ◽  
Author(s):  
A. Gilat ◽  
K. Krishna

A new configuration for testing thin layers of solder is introduced and employed to study the effects of strain rate and thickness on the mechanical response of eutectic Sn-Pb solder. The solder in the test is loaded under a well defined state of pure shear stress. The stress and deformation in the solder are measured very accurately to produce a reliable stress-strain curve. The results show that both the stress needed for plastic deformation and ductility increase with increasing strain rate.


2019 ◽  
Vol 44 (3) ◽  
pp. 277-284 ◽  
Author(s):  
Kert Tamm ◽  
Jüri Engelbrecht ◽  
Tanel Peets

Abstract In this paper mathematical models are formulated in order to simulate heat production and corresponding temperature changes which accompany the propagation of an action potential. Based on earlier experimental results, several models are proposed. Together with the earlier system of coupled differential equations derived by the authors for describing the electrical and mechanical components of signaling in nerve fibers, the novel results permit to cast the whole process of signaling into one system. The emphasis is on the mathematical description of coupling forces. The numerical results are qualitatively similar to experiments.


1996 ◽  
Vol 122 (3) ◽  
pp. 245-254 ◽  
Author(s):  
Zdeněk P. Bažant ◽  
Yuyin Xiang ◽  
Pere C. Prat

Sign in / Sign up

Export Citation Format

Share Document