Thermodynamic Characterization of Red Blood Cell Suspension and Band 3 Protein Oxy-Deoxygenating Functionality: Comparative Study

2020 ◽  
Vol 46 (2) ◽  
pp. 121-137
Author(s):  
Francesco Farsaci ◽  
Ester Tellone ◽  
Annamaria Russo ◽  
Antonio Galtieri ◽  
Silvana Ficarra

Abstract The importance of studying storage alterations in erythrocytes is highlighted by the need to understand changes that could potentially serve to optimize the storage system. With this aim, the non-equilibrium thermodynamic theory with internal variables was introduced, and perturbing the erythrocyte samples with a harmonic electric field some functions of the theory have been determined varying in the perturbation frequency. A frequency has been noted that acts as a separator element between two states showing a different entropy production above and below this frequency. In stored red blood cells compared to fresh ones, the increase in entropy production measured shows a greater state of disorder in the latter. Further alterations have been highlighted on the surface charge density of the stored erythrocyte membrane and on the speed of anionic kinetics. All these observations highlight the image of membrane structural and functional alterations of the stored erythrocytes and lead to the elaboration of a technique able to correlate a specific perturbation frequency with the aging time of red blood cells.

Fluids ◽  
2019 ◽  
Vol 4 (3) ◽  
pp. 135 ◽  
Author(s):  
Francesco Farsaci ◽  
Ester Tellone ◽  
Antonio Galtieri ◽  
Silvana Ficarra

In this paper, we formulate a thermodynamic model of hemoglobin that describes, by a physical point of view, phenomena favoring the binding of oxygen to the protein. Our study is based on theoretical methods extrapolated by experimental data. After some remarks on the non-equilibrium thermodynamic theory with internal variables, some thermodynamic functions are determined by the value of the complex dielectric constant. In previous papers, we determined the explicit expression of a dielectric constant as a function of a complex dielectric modulus and frequency. The knowledge of these functions allows a new characterization of the material and leads to the study of new phenomena that has yet to be studied. In detail, we introduce the concept of “hemoglobe”, a model that considers the hemoglobin molecule as a plane capacitor, the dielectric of which is almost entirely constituted by the quaternary structure of the protein. This model is suggested by considering a phenomenological coefficient of the non-equilibrium thermodynamic theory related to the displacement polarization current. The comparison of the capacity determined by the mean of this coefficient, and determined by geometrical considerations, gives similar results; although more thermodynamic information is derived by the capacity determined considering the aforementioned coefficient. This was applied to the normal human hemoglobin, homozygous sickle hemoglobin, and sickle cell hemoglobin C disease. Moreover, the energy of the capacitor of the three hemoglobin was determined. Through the identification of displacement currents, the introduction of this model presents new perspectives and helps to explain hemoglobin functionality through a physical point of view.


Lab on a Chip ◽  
2021 ◽  
Author(s):  
YUHAO QIANG ◽  
Jia Liu ◽  
Ming Dao ◽  
E Du

Red blood cells (RBCs) are subjected to recurrent changes in shear stress and oxygen tension during blood circulation. The cyclic shear stress has been identified as an important factor that...


2016 ◽  
Vol 100 ◽  
pp. S193
Author(s):  
Joo-Yeun Oh ◽  
Xin Xu ◽  
Kristopher Genschmer ◽  
Ming Zhong ◽  
Jindong Li ◽  
...  
Keyword(s):  

2021 ◽  
Vol 15 (02) ◽  
pp. 270-279
Author(s):  
Aline Griebler ◽  
Fernanda Weyand Banhuk ◽  
Izabela Virginia Staffen ◽  
Aline Antunes Maciel Bortoluzzi ◽  
Thaís Soprani Ayala ◽  
...  

Introduction: Trypanosoma cruzi is the agent of Chagas’ disease and affects approximately 6-8 million people worldwide. The search for new anti-T. cruzi drugs are relevant because only two drugs exist actually. The objective of this study was to investigate the effect of the extracts from the seeds of Lonchocarpus cultratus on T. cruzi, its cytotoxicity as well as to elucidate its chemical profile. Methodology: The characterization of the extracts was done using 1H-RMN. T. cruzi forms were treated with increasing concentrations of the extracts and after, the percentage of inhibition and IC50 or LC50 were calculated. Murine peritoneal macrophages were treated with different concentrations of the extracts to evaluate the cellular viability. The hemotoxicity was accessed by verifying the levels of hemolysis caused by the extracts on human red blood cells. Results: Chalcones isocordoin and lonchocarpin were detected in the dichloromethane extract, and chalcone lonchocarpin was detected in the hexane extract. The dichloromethane extract showed higher activity against all the forms of T. cruzi compared to the other two extracts, but the hexane showed the best selectivity index. The cytotoxicity observed in murine macrophages was confirmed in human erythrocytes, with dichloromethane extract having the highest toxicity. The methanolic extract showed the lowest anti-T. cruzi activity but was nontoxic to peritoneal murine macrophages and red blood cells. Conclusions: L. cultratus extracts have the potential to be explored for the development of new anti-trypanosomal drugs. This study was the first to demonstrate the action of extracts from the genus Lonchocarpus on infecting forms of T. cruzi.


Blood ◽  
1991 ◽  
Vol 78 (11) ◽  
pp. 3056-3065 ◽  
Author(s):  
ST Test ◽  
P Butikofer ◽  
MC Yee ◽  
FA Kuypers ◽  
B Lubin

Abstract A deficiency of membrane proteins having a glycosylphosphatidylinositol (GPI) anchor is characteristic of the erythrocytes of paroxysmal nocturnal hemoglobinuria (PNH) and is currently believed to be the basis for the enhanced susceptibility to lysis by activated complement observed in these cells. Our recent observation that GPI-anchored proteins are preferentially lost into membrane vesicles shed from normal erythrocytes after calcium loading led us to examine the hypothesis that the remnant erythrocytes might also have increased sensitivity to complement-mediated hemolysis. Indeed, red blood cells treated in such a manner became more sensitive to lysis by antibody and complement or to lysis initiated by activated cobra venom factor complexes (CoFBb). As a consequence of membrane vesiculation, the erythrocytes lost up to approximately 50% of their immunoreactive decay- accelerating factor and 25% to 30% of their immunoreactive membrane inhibitor of reactive lysis (MIRL). Closer examination of the defect responsible for the marked increase in sensitivity to CoFBb-initiated hemolysis seen in calcium-loaded erythrocytes showed that a complex combination of factors produced the defect. These included a decrease in both functional and immunoreactive MIRL and depletion of intracellular potassium and adenosine triphosphate (ATP). These results suggest the possibility that loss of DAF and MIRL via membrane vesiculation, as well as decreases in intracellular potassium and/or ATP, might contribute to the phenotype of PNH erythrocytes. Further, normal or pathologic red blood cells might develop a PNH-like defect after membrane vesiculation if sufficient decreases in potassium and ATP also occurred.


Lab on a Chip ◽  
2020 ◽  
Vol 20 (2) ◽  
pp. 226-235 ◽  
Author(s):  
Emel Islamzada ◽  
Kerryn Matthews ◽  
Quan Guo ◽  
Aline T. Santoso ◽  
Simon P. Duffy ◽  
...  

Cell sorting using microfluidic ratchets enables sensitive and consistent characterization of donor red blood cell deformability. Using this capability, we show the degradation of red blood cell deformability during cold storage is donor-dependent.


Sign in / Sign up

Export Citation Format

Share Document