scholarly journals Expression of placental regulatory genes is associated with fetal growth

2017 ◽  
Vol 45 (7) ◽  
Author(s):  
Maya A. Deyssenroth ◽  
Qian Li ◽  
Marina Lacasaña ◽  
Yoko Nomura ◽  
Carmen Marsit ◽  
...  

AbstractThe placenta is the principal organ regulating respiratory, nutritional, endocrine and metabolic functions on behalf of the developing fetus. Changes in gene expression patterns of placenta-specific genes may influence fetal growth. We profiled the expression of 17 genes related to placenta functioning in term placentas (n=677) to identify genes differentially expressed across birth weight categories [small (SGA), appropriate (AGA) and large (LGA) for gestational age].

2021 ◽  
Author(s):  
Graham L. Cromar ◽  
Jonathan Epp ◽  
Ana Popovic ◽  
Yusing Gu ◽  
Violet Ha ◽  
...  

ABSTRACTToxoplasma gondii is a single celled parasite thought to infect 1 in 3 worldwide. During chronic infection, T. gondii can migrate to the brain where it promotes low-grade neuroinflammation with the capacity to induce changes in brain morphology and behavior. Consequently, infection with T. gondii has been linked with a number of neurocognitive disorders including schizophrenia (SZ), dementia, and Parkinson’s disease. Beyond neuroinflammation, infection with T. gondii can modulate the production of neurotransmitters, such as dopamine. To further dissect these pathways and examine the impact of altered dopaminergic sensitivity in T. gondii-infected mice on both behavior and gene expression, we developed a novel mouse model, based on stimulant-induced (cocaine) hyperactivity. Employing this model, we found that infection with T. gondii did not alter fear behavior but did impact motor activity and neuropsychiatric-related behaviurs. While both behaviors may help reduce predator avoidance, consistent with previous studies, the latter finding is reminiscent of neurocognitive disorders. Applying RNASeq to two relevant brain regions, striatum and hippocampus, we identified a broad upregulation of immune responses. However, we also noted significant associations with more meaningful neurologically relevant terms were masked due to the sheer number of terms incorporated in multiple testing correction. We therefore performed a more focused analysis using a curated set of neurologically relevant terms revealing significant associations across multiple pathways. We also found that T. gondii and cocaine treatments impacted the expression of similar functional pathways in the hippocampus and striatum although, as indicated by the low overlap among differentially expressed genes, largely via different proteins. Furthermore, while most differentially expressed genes reacted to a single condition and were mostly upregulated, we identified gene expression patterns indicating unexpected interactions between T. gondii infection and cocaine exposure. These include sets of genes which responded to cocaine exposure but not upon cocaine exposure in the context of T. gondii infection, suggestive of a neuroprotective effect advantageous to parasite persistence. Given its ability to uncover such complex relationships, we propose this novel model offers a new perspective to dissect the molecular pathways by which T. gondii infection contributes to neuropsychiatric disorders such as schizophrenia.


2008 ◽  
Vol 20 (1) ◽  
pp. 165
Author(s):  
X. S. Cui ◽  
X. Y. Li ◽  
T. Kim ◽  
N.-H. Kim

Trichostatin A (TSA) is an inhibitor of histone deacetylase and is able to alter gene expression patterns by interfering with the removal of acetyl groups from histones. The aim of this study was to determine the effect of TSA treatment on the development and gene expression patterns of mouse zygotes developing in vitro. The addition of 100 nm TSA to the culture medium did not affect the cleavage of mouse embryos (TSA treatment, 148/150 (99%) v. control, 107/107 (100%)); however, embryos that were treated with TSA arrested at the 2-cell stage (145/148, 98%). We estimated the number of nuclei in control and TSA-treated embryos by propidium iodide staining, taking into account the presence of any cells with two or more nuclei. At 62–63 h post-hCG stimulation, control zygotes had developed to the 4-cell stage and exhibited one nucleus in each blastomere, indicative of normal development. In contrast, we observed tetraploid nuclei in at least one blastomere in 20.8% (11/53) of the embryos that had been treated with TSA. At 28–29 h post-hCG stimulation (metaphase of the 1-cell stage), there was no difference in the mitotic index (as determined by analyzing the microtubule configuration) in the TSA group compared to the control group. At the 2-cell stage, however, we did not observe mitotic spindles and metaphase chromatin in embryos in the TSA treatment group compared to the controls. Interestingly, when embryos were cultured in TSA-free medium from 35 h post-hCG stimulation (S- or early G2-phase of the 2-cell stage) onward, almost all of them (47/50) developed to the blastocyst stage. In contrast, when embryos were cultured in TSA-free medium from 42 h post-hCG stimulation (middle G2-phase of the 2-cell stage) onward, they did not develop to the 4-cell stage. We used Illumina microarray technology to analyze the gene expression profiles in control and TSA-treated late 2-cell-stage embryos. Applied Biosystems Expression System software was used to extract assay signals and assay signal-to-noise ratio values from the microarray images. Our data showed that 897 genes were significantly (P < 0.05; 2-sample t-test) up- or down-regulated by TSA treatment compared to controls. Analysis using the PANTHER classification system (https://panther.appliedbiosystems.com) revealed that the 575 genes that were differentially expressed in the TSA group compared to the control were classified as being associated with putative biological processes or molecular function. Overall, in terms of putative biological processes, more nucleoside, nucleotide, and nucleic acid metabolism, protein metabolism and modification, signal transduction, developmental process, and cell cycle genes were differentially expressed between the TSA and control groups. In terms of putative molecular function, more nucleic acid-binding transcription factor and transferase genes were differentially expressed between the groups. The results collectively suggest that inhibition of histone acetylation in mouse embryos affects gene expression profiles at the time of zygotic genome activation, and this subsequently affects further development.


2020 ◽  
Vol 16 (1) ◽  
Author(s):  
G. R. Markby ◽  
V. E. Macrae ◽  
B. M. Corcoran ◽  
K. M. Summers

Abstract Background Almost all elderly dogs develop myxomatous mitral valve disease by the end of their life, but the cavalier King Charles spaniel (CKCS) has a heightened susceptibility, frequently resulting in death at a young age and suggesting that there is a genetic component to the condition in this breed. Transcriptional profiling can reveal the impact of genetic variation through differences in gene expression levels. The aim of this study was to determine whether expression patterns were different in mitral valves showing myxomatous degeneration from CKCS dogs compared to valves from non-CKCS dogs. Results Gene expression patterns in three groups of canine valves resulted in distinct separation of normal valves, diseased valves from CKCS and diseased valves from other breeds; the latter were more similar to the normal valves than were the valves from CKCS. Gene expression patterns in diseased valves from CKCS dogs were quite different from those in the valves from other dogs, both affected and normal. Patterns in all diseased valves (from CKCS and other breeds) were also somewhat different from normal non-diseased samples. Analysis of differentially expressed genes showed enrichment in GO terms relating to cardiac development and function and to calcium signalling canonical pathway in the genes down-regulated in the diseased valves from CKCS, compared to normal valves and to diseased valves from other breeds. F2 (prothrombin) (CKCS diseased valves compared to normal) and MEF2C pathway activation (CKCS diseased valves compared to non-CKCS diseased valves) had the strongest association with the gene changes. A large number of genes that were differentially expressed in the CKCS diseased valves compared with normal valves and diseased valves from other breeds were associated with cardiomyocytes including CASQ2, TNNI3 and RYR2. Conclusion Transcriptomic profiling identified gene expression changes in CKCS diseased valves that were not present in age and disease severity-matched non-CKCS valves. These genes are associated with cardiomyocytes, coagulation and extra-cellular matrix remodelling. Identification of genes that vary in the CKCS will allow exploration of genetic variation to understand the aetiology of the disease in this breed, and ultimately development of breeding strategies to eliminate this disease from the breed.


2007 ◽  
Vol 1 ◽  
pp. BBI.S311 ◽  
Author(s):  
Florin M. Selaru ◽  
Suna Wang ◽  
Jing Yin ◽  
Karsten Schulmann ◽  
Yan Xu ◽  
...  

Background and Aims Because of the extremely low neoplastic progression rate in Barrett's esophagus, it is difficult to diagnose patients with concomitant adenocarcinoma early in their disease course. If biomarkers existed in normal squamous esophageal epithelium to identify patients with concomitant esophageal adenocarcinoma, potential applications would be far-reaching. The aim of the current study was to identify global gene expression patterns in normal esophageal epithelium capable of revealing simultaneous esophageal adenocarcinoma, even located remotely in the esophagus. Methods Tissues comprised normal esophageal epithelia from 9 patients with esophageal adenocarcinoma, 8 patients lacking esophageal adenocarcinoma or Barrett's, and 6 patients with Barrett's esophagus alone. cDNA microarrays were performed, and pattern recognition in each of these subgroups was achieved using shrunken nearest centroid predictors. Results Our method accurately discriminated normal esophageal epithelia of 8/8 patients without esophageal adenocarcinoma or Barrett's esophagus and of 6/6 patients with Barrett's esophagus alone from normal esophageal epithelia of 9/9 patients with Barrett's esophagus and concomitant esophageal adenocarcinoma. Moreover, we identified genes differentially expressed between the above subgroups. Thus, based on their corresponding normal esophageal epithelia alone, our method accurately diagnosed patients who had concomitant esophageal adenocarcinoma. Conclusions These global gene expression patterns, along with individual genes culled from them, represent potential biomarkers for the early diagnosis of esophageal adenocarcinoma from normal esophageal epithelia. Genes discovered in normal esophagus that are differentially expressed in patients with vs. without esophageal adenocarcinoma merit further pursuit in molecular genetic, functional, and therapeutic interventional studies.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Shadi Eshghi Sahraei ◽  
Michelle Cleary ◽  
Jan Stenlid ◽  
Mikael Brandström Durling ◽  
Malin Elfstrand

Abstract Background With the expanding ash dieback epidemic that has spread across the European continent, an improved functional understanding of the disease development in afflicted hosts is needed. The study investigated whether differences in necrosis extension between common ash (Fraxinus excelsior) trees with different levels of susceptibility to the fungus Hymenoscyphus fraxineus are associated with, and can be explained by, the differences in gene expression patterns. We inoculated seemingly healthy branches of each of two resistant and susceptible ash genotypes with H. fraxineus grown in a common garden. Results Ten months after the inoculation, the length of necrosis on the resistant genotypes were shorter than on the susceptible genotypes. RNA sequencing of bark samples collected at the border of necrotic lesions and from healthy tissues distal to the lesion revealed relatively limited differences in gene expression patterns between susceptible and resistant genotypes. At the necrosis front, only 138 transcripts were differentially expressed between the genotype categories while 1082 were differentially expressed in distal, non-symptomatic tissues. Among these differentially expressed genes, several genes in the mevalonate (MVA) and iridoid pathways were found to be co-regulated, possibly indicating increased fluxes through these pathways in response to H. fraxineus. Comparison of transcriptional responses of symptomatic and non-symptomatic ash in a controlled greenhouse experiment revealed a relatively small set of genes that were differentially and concordantly expressed in both studies. This gene-set included the rate-limiting enzyme in the MVA pathway and a number of transcription factors. Furthermore, several of the concordantly expressed candidate genes show significant similarity to genes encoding players in the abscisic acid- or Jasmonate-signalling pathways. Conclusions A set of candidate genes, concordantly expressed between field and greenhouse experiments, was identified. The candidates are associated with hormone signalling and specialized metabolite biosynthesis pathways indicating the involvement of these pathways in the response of the host to infection by H. fraxineus.


2010 ◽  
Vol 2010 ◽  
pp. 1-4 ◽  
Author(s):  
Yukiko Katagiri ◽  
Chizu Aoki ◽  
Yuko Tamaki-Ishihara ◽  
Yusuke Fukuda ◽  
Mamoru Kitamura ◽  
...  

We used placental tissue to compare the imprinted gene expression of IGF2, H19, KCNQ1OT1, and CDKN1C of singletons conceived via assisted reproduction technology (ART) with that of spontaneously conceived (SC) singletons. Of 989 singletons examined (ART ; SC ), neonatal weight was significantly lower in the ART group than in the SC group, but placental weight showed no significant difference. Gene expression analyzed by real-time PCR was similar for both groups with appropriate-for-date (AFD) birth weight. H19 expression was suppressed in fetal growth retardation (FGR) cases in the ART and SC groups compared with AFD cases ( and , resp.). In contrast, CDKN1C expression was suppressed in FGR cases in the ART group , while KCNQ1OT1 expression was hyperexpressed in FGR cases in the SC group . As imprinted gene expression patterns differed between the ART and SC groups, we speculate that ART modifies epigenetic status even though the possibilities always exist.


2013 ◽  
Vol 25 (1) ◽  
pp. 187
Author(s):  
M. J. Sudano ◽  
E. S. Caixeta ◽  
D. M. Paschoal ◽  
T. S. Rascado ◽  
L. F. Crocomo ◽  
...  

Over the past decades, there have been great advances in in vitro production (IVP) systems with improved culture methods and new knowledge regarding embryo genetics, physiology, ultrastructure, and morphology. Nevertheless, a major obstacle for dissemination of this technology is the great sensitivity of IVP embryos to cryopreservation. The objective was to study the global gene-expression patterns of fresh and vitrified IVP bovine embryos. Oocytes (N = 1290) were matured and fertilized in vitro (Day 0). Presumptive zygotes were cultured in SOFaa with 0.5% BSA and 2.5% of FCS. Cleavage and blastocyst production was evaluated after 3 and 7 days under standard culture conditions (at 38.5°C in atmosphere of 5% O2, 5% CO2, and 90% N2). On Day 7, half of the blastocysts were vitrified (n = 94), warmed (Sudano et al. 2011 Theriogenology 75, 1211–1220), and returned for 24 h of additional culture (re-expansion and hatching; hatched was evaluated 12 and 24 h after warming, respectively) when their RNA was extracted (vitrified group). The remaining embryos returned to culture until Day 8 when their RNA was extracted (fresh group). Total RNA extraction of a single blastocyst was performed using the PicoPure Kit (Applied Biosystems®, Foster City, CA, USA). The RNA samples were DNAse treated (Qiagen®, Valencia, CA, USA), and mRNA was amplified (RiboAmp Kit®). The aRNA output was evaluated with a NanoDrop (Thermo®, Wilmington, DE, USA) and Bioanalyzer (Agilent®, Santa Clara, CA, USA). Biotin-labelled and fragmented cRNA were obtained with the 3′IVT Kit (Affymetrix®, Santa Clara, CA, USA) to perform hybridization (N = 6–7, respectively, for vitrified and fresh groups) using the GeneChip Bovine Array (Affymetrix®). Microarray data analysis was performed with the FlexArray 1.6.1.1. Genes with a fold change of at least 2 and a probability of P ≤ 0.05 were considered differentially expressed. Real-time PCR was used to validate microarray results (N = 11–15, respectively, for vitrified and fresh groups). As a control, a pool of 200 blastocysts was submitted or not to mRNA amplification followed by the reverse transcription and qPCR of 17 genes. For statistical analyses, PROC GLIMMIX, PROC LOGISTIC, and PROC CORR were used. Cleavage and blastocyst production rates were 86.8 ± 1.0 and 32.5 ± 1.9%, respectively. Re-expansion and hatching/hatched rates were 69.3 and 19.3%, respectively. Messenger RNA abundance of amplified and nonamplified RNA had a high correlation (r = 0.89, P < 0.01). The microarray analysis indicated 383 differentially expressed genes (P ≤ 0.05) between fresh and vitrified blastocysts. Genes involved in apoptosis (PRDX2), heat shock (HSPA5), maternal recognition of pregnancy (IFNT2 and PAG2), and cell differentiation and placenta formation (KRT18) were downregulated in vitrified embryos. According to qPCR analysis, mRNA abundance of IFNT2, PRDX2, and KRT18 was downregulated, whereas HSPA5 mRNA levels were upregulated in vitrified blastocysts. Messenger RNA abundance of PAG2 was not different (P = 0.46) between fresh and vitrified embryos. In conclusion, vitrification alters the expression profile of the genes IFNT2, PRDX2, KRT18, and HSPA5 that can be related with embryo postcryopreservation survival capacity. FAPESP and LNBio-CNPEM are acknowledged.


2007 ◽  
Vol 35 (04) ◽  
pp. 609-620 ◽  
Author(s):  
Liping Yang ◽  
Miqu Wang ◽  
Wei Wu ◽  
Louxin Zhang

Microarrays are widely used to study changes in gene expression in diseases. In this paper, we use this technology to discover gene expression patterns in the cold syndrome in Chinese medicine. We identify differentially expressed genes and extracted gene modules that are enriched with differentially expressed genes in the cold syndrome by analyzing cDNA samples, which are purified from blood taken from a pedigree. Our results suggest that the cold syndrome might be caused by the physiological imbalance and/or the disorder of metabolite processes. The study confirms the hypotheses about molecular pathways responsible to human metabolic-related diseases.


2005 ◽  
Vol 289 (3) ◽  
pp. F552-F561 ◽  
Author(s):  
J. M. Seubert ◽  
F. Xu ◽  
J. P. Graves ◽  
J. B. Collins ◽  
S. O. Sieber ◽  
...  

Development of hypertension stems from both environmental and genetic factors wherein the kidney plays a central role. Spontaneously hypertensive rats (SHR) and the nonhypertensive Wistar-Kyoto (WKY) controls are widely used as a model for studying hypertension. The present study examined the renal gene expression profiles between SHR and WKY at a prehypertensive stage (3 wk of age) and hypertensive stage (9 wk of age). Additionally, age-related changes in gene expression patterns were examined from 3 to 9 wk in both WKY and SHR. Five to six individual kidney samples of the same experimental group were pooled together, and quadruplicate hybridizations were performed using the National Institute of Environmental Health Sciences Rat version 2.0 Chip, which contains ∼6,700 genes. Twenty two genes were found to be differentially expressed between SHR and WKY at 3 wk of age, and 104 genes were differentially expressed at 9 wk of age. Soluble epoxide hydrolase ( Ephx2) was found to be significantly upregulated in SHR at both time points and was the predominant outlier. Conversely, elastase 1 ( Ela1) was found to be the predominant gene downregulated in SHR at both time points. Analysis of profiles at 3 vs. 9 wk of age identified 508 differentially expressed genes in WKY rats. In contrast, only 211 genes were found to be differentially expressed during this time period in SHR. The altered gene expression patterns observed in the age-related analysis suggested significant differences in the vascular extracellular matrix system between SHR and WKY kidney. Together, our data highlight the complexity of hypertension and the numerous genes involved in and affected by this condition.


Sign in / Sign up

Export Citation Format

Share Document