Comparison of FDM-printed and compression molded tensile samples

2020 ◽  
Vol 62 (10) ◽  
pp. 985-992
Author(s):  
Robin Roj ◽  
Jessica Nürnberg ◽  
Ralf Theiß ◽  
Peter Dültgen

Abstract Since the processing of plastics by additive manufacturing techniques, for example, fused deposition modeling, has become quite common, it is mainly used for the production of unique pieces for private consumption as well as for prototyping in industry. In order to professionally manufacture plastic components in large amounts, due to time, cost, and quality factors, injection molding is more suitable. Nevertheless, it is of great interest to print plastic parts in small batch series for technical tasks. In this paper, FDM-produced tensile samples, made from 16 materials, printed in three orientations, are compared to compression molded components. In addition to ordinary filaments, composite materials with metal-, carbon-, wood-, and stone-additives are also examined. While some cavities emerged in both printed and molded samples, the results support the hypothesis that the mechanical properties depend on the components’ densities.

2011 ◽  
Vol 199-200 ◽  
pp. 1984-1987 ◽  
Author(s):  
Olaf Diegel ◽  
Sarat Singamneni ◽  
Ben Huang ◽  
Ian Gibson

This paper describes a curved-layer additive manufacturing technology that has the potential to print plastic components with integral conductive polymer electronic circuits. Researchers at AUT University in New Zealand and the National University of Singapore have developed a novel Fused Deposition Modeling (FDM) process in which the layers of material that make up the part are deposited as curved layers instead of the conventional flat layers. This technology opens up possibilities of building curved plastic parts that have conductive electronic tracks and components printed as an integral part of the plastic component, thereby eliminating printed circuit boards and wiring. It is not possible to do this with existing flat-layer additive manufacturing technologies as the continuity of a circuit could be interrupted between the layers. With curved-layer fused deposition modeling (CLFDM) this problem is removed as continuous filaments in 3 dimensions can be produced, allowing for continuous conductive circuits.


2018 ◽  
Vol 55 (2) ◽  
pp. 211-214
Author(s):  
Nicoleta Elisabeta Pascu ◽  
Tiberiu Gabriel Dobrescu ◽  
Emilia Balan ◽  
Gabriel Jiga ◽  
Victor Adir

The paper shows the importance of designing an ABS (Acrylonitrile-Butadiene-Styrene) plastic part which will be produced using FDM (Fused Deposition Modeling) technology; it is obtained a product with the same characteristics provided by the operating guide book. Thus, this solution combines both the capacity of the designer as well as the applied technology and can produce similar or improved plastic components, at the same time maintaining the functional characteristics of the work piece. This paper is a plea for the application of 3D printing using FDM technology for manufacturing components (spare parts) out of production, because the technological systems users no longer have other solutions available for replacing outworn plastic parts. 3D printing using FDM technology is a fast option for replacing outworn components, the modeling, simulation and printing time being shorter than the purchase time of a new subassembly or assembly that has been remanufactured and modernized.


2011 ◽  
Vol 467-469 ◽  
pp. 662-667 ◽  
Author(s):  
Olaf Diegel ◽  
Sarat Singamneni ◽  
Ben Huang ◽  
Ian Gibson

This paper describes an additive manufacturing technology that has the potential to print plastic components with integral conductive polymer electronic circuits. This could have a major impact in the fields of robotics and mechatronics as it has the potential to allow large wiring looms, often an issue with complex robotic systems, to be printed as an integral part of the products plastic shell. This paper describes the development of a novel Fused Deposition Modeling (FDM) process in which the layers of material that make up the part are deposited as curved layers instead of the conventional flat layers. This opens up possibilities of building curved plastic parts that have conductive electronic tracks and components printed as an integral part of the plastic component, thereby eliminating printed circuit boards and wiring. It is not possible to do this with existing flatlayer additive manufacturing technologies as the continuity of a circuit could be interrupted between the layers. With curved-layer fused deposition modeling (CLFDM) this problem is removed as continuous filaments in 3 dimensions can be produced, allowing for continuous conductive circuits.


2021 ◽  
Vol 14 (2) ◽  
pp. 143
Author(s):  
Julius Krause ◽  
Laura Müller ◽  
Dorota Sarwinska ◽  
Anne Seidlitz ◽  
Malgorzata Sznitowska ◽  
...  

In the treatment of pediatric diseases, suitable dosages and dosage forms are often not available for an adequate therapy. The use of innovative additive manufacturing techniques offers the possibility of producing pediatric dosage forms. In this study, the production of mini tablets using fused deposition modeling (FDM)-based 3D printing was investigated. Two pediatric drugs, caffeine and propranolol hydrochloride, were successfully processed into filaments using hyprolose and hypromellose as polymers. Subsequently, mini tablets with diameters between 1.5 and 4.0 mm were printed and characterized using optical and thermal analysis methods. By varying the number of mini tablets applied and by varying the diameter, we were able to achieve different release behaviors. This work highlights the potential value of FDM 3D printing for the on-demand production of patient individualized, small-scale batches of pediatric dosage forms.


2017 ◽  
Vol 23 (4) ◽  
pp. 804-810 ◽  
Author(s):  
Shiqing Cao ◽  
Dandan Yu ◽  
Weilan Xue ◽  
Zuoxiang Zeng ◽  
Wanyu Zhu

Purpose The purpose of this paper is to prepare a new modified polybutylene terephalate (MPBT) for fused deposition modeling (FDM) to increase the variety of materials compatible with printing. And the printing materials can be used to print components with a complex structure and functional mechanical parts. Design/methodology/approach The MPBT, poly(butylene terephalate-co-isophthalate-co-sebacate) (PBTIS), was prepared for FDM by direct esterification and subsequent polycondensation using terephthalic acid (PTA), isophthalic acid (PIA), sebacic acid (SA) and 1,4-butanediol (BDO). The effects of the content of PIA (20-40 mol%) on the mechanical properties of PBTIS were investigated when the mole per cent of SA (αSA) is zero. The effects of αSA (0-7mol%) on the thermal, rheological and mechanical properties of PBTIS were investigated at nPTA/nPIA = 7/3. A desktop wire drawing and extruding machine was used to fabricate the filaments, whose printability and anisotropy were tested by three-dimensional (3D) printing experiments. Findings A candidate content of PIA introducing into PBT was obtained to be about 30 per cent, and the Izod notched impact strength of PBTIS increased with the increase of αSA. The results showed that the PBTIS (nPTA/nPIA = 7/3, αSA = 3-5mol%) is suitable for FDM. Originality/value New printing materials with good Izod notched impact strength were obtained by introducing PIA and SA (nPTA/nPIA = 7/3, αSA = 3-5 mol%) into PBT and their anisotropy are better than that of ABS.


2021 ◽  
pp. 089270572110530
Author(s):  
Nagarjuna Maguluri ◽  
Gamini Suresh ◽  
K Venkata Rao

Fused deposition modeling (FDM) is a fast-expanding additive manufacturing technique for fabricating various polymer components in engineering and medical applications. The mechanical properties of components printed with the FDM method are influenced by several process parameters. In the current work, the influence of nozzle temperature, infill density, and printing speed on the tensile properties of specimens printed using polylactic acid (PLA) filament was investigated. With an objective to achieve better tensile properties including elastic modulus, tensile strength, and fracture strain; Taguchi L8 array has been used for framing experimental runs, and eight experiments were conducted. The results demonstrate that the nozzle temperature significantly influences the tensile properties of the FDM printed PLA products followed by infill density. The optimum processing parameters were determined for the FDM printed PLA material at a nozzle temperature of 220°C, infill density of 100%, and printing speed of 20 mm/s.


Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 465
Author(s):  
Roberto Scaffaro ◽  
Maria Clara Citarrella ◽  
Emmanuel Fortunato Gulino ◽  
Marco Morreale

In this work, an innovative green composite was produced by adding Hedysarum coronarium (HC) flour to a starch-based biodegradable polymer (Mater-Bi®, MB). The flour was obtained by grinding together stems, leaves and flowers and subsequently sieving it, selecting a fraction from 75 μm to 300 μm. Four formulations have been produced by compression molding (CM) and fused deposition modeling (FDM) by adding 5%, 10%, 15% and 20% of HC to MB. The influence of filler content on the processability was tested, and rheological, morphological and mechanical properties of composites were also assessed. Through CM, it was possible to obtain easily homogeneous samples with all filler amounts. Concerning FDM, 5% and 10% HC-filled composites proved also easily printable. Mechanical results showed filler effectively acted as reinforcement: Young’s modulus and tensile strengths of the composites increased from 74.3 MPa to 236 MPa and from 18.6 MPa to 33.4 MPa, respectively, when 20% of HC was added to the pure matrix. FDM samples, moreover, showed higher mechanical properties if compared with CM ones due to rectilinear infill and fibers orientation. In fact, regarding the 10% HC composites, Young’s modulus of the CM and FDM ones displayed a relative increment of 176% and 224%, respectively.


2021 ◽  
Vol 6 (2) ◽  
pp. 119
Author(s):  
Nanang Ali Sutisna ◽  
Rakha Amrillah Fattah

The method of producing items through synchronously depositing material level by level, based on 3D digital models, is named Additive Manufacturing (AM) or 3D-printing. Amongs many AM methods, the Fused Deposition Modeling (FDM) technique along with PLA (Polylactic acid) material is commonly used in additive manufacturing. Until now, the mechanical properties of the AM components could not be calculated or estimated until they've been assembled and checked. In this work, a novel approach is suggested as to how the extrusion process affects the mechanical properties of the printed component to obtain how the parts can be manufactured or printed to achieve improved mechanical properties. This methodology is based on an experimental procedure in which the combination of parameters to achieve an optimal from a manufacturing experiment and its value can be determined, the results obtained show the effect of the extrusion process affects the mechanical properties.


Sign in / Sign up

Export Citation Format

Share Document