scholarly journals Mid-infrared integrated photonics on silicon: a perspective

Nanophotonics ◽  
2017 ◽  
Vol 7 (2) ◽  
pp. 393-420 ◽  
Author(s):  
Hongtao Lin ◽  
Zhengqian Luo ◽  
Tian Gu ◽  
Lionel C. Kimerling ◽  
Kazumi Wada ◽  
...  

AbstractThe emergence of silicon photonics over the past two decades has established silicon as a preferred substrate platform for photonic integration. While most silicon-based photonic components have so far been realized in the near-infrared (near-IR) telecommunication bands, the mid-infrared (mid-IR, 2–20-μm wavelength) band presents a significant growth opportunity for integrated photonics. In this review, we offer our perspective on the burgeoning field of mid-IR integrated photonics on silicon. A comprehensive survey on the state-of-the-art of key photonic devices such as waveguides, light sources, modulators, and detectors is presented. Furthermore, on-chip spectroscopic chemical sensing is quantitatively analyzed as an example of mid-IR photonic system integration based on these basic building blocks, and the constituent component choices are discussed and contrasted in the context of system performance and integration technologies.

2020 ◽  
Author(s):  
Yu Deng ◽  
Zhuo-Fei Fan ◽  
Shiyuan Zhao ◽  
Frédéric Grillot ◽  
Cheng Wang

Abstract Chaos in nonlinear dynamical systems is featured with irregular appearance and with high sensitivity to initial conditions. Near-infrared semiconductor lasers subject to optical feedback from an external reflector are popular chaotic light sources, which have enabled multiple applications. Here, we report the fully-developed chaos in a mid-infrared interband cascade laser with external optical feedback. The chaos leads to significant electrical power enhancement over a frequency span of 500 MHz. In addition, the laser also exhibits periodic oscillations or low-frequency fluctuations before producing chaos, depending on the operation conditions. This work paves the way for extending chaos investigations from the near-infrared regime to the mid-infrared regime, which can stimulate potential applications in this spectral range.


Nanophotonics ◽  
2018 ◽  
Vol 7 (11) ◽  
pp. 1781-1793 ◽  
Author(s):  
Delphine Marris-Morini ◽  
Vladyslav Vakarin ◽  
Joan Manel Ramirez ◽  
Qiankun Liu ◽  
Andrea Ballabio ◽  
...  

AbstractGermanium (Ge) has played a key role in silicon photonics as an enabling material for datacom applications. Indeed, the unique properties of Ge have been leveraged to develop high performance integrated photodectors, which are now mature devices. Ge is also very useful for the achievement of compact modulators and monolithically integrated laser sources on silicon. Interestingly, research efforts in these domains also put forward the current revolution of mid-IR photonics. Ge and Ge-based alloys also present strong advantages for mid-infrared photonic platform such as the extension of the transparency window for these materials, which can operate at wavelengths beyond 8 μm. Different platforms have been proposed to take benefit from the broad transparency of Ge up to 15 μm, and the main passive building blocks are now being developed. In this review, we will present the most relevant Ge-based platforms reported so far that have led to the demonstration of several passive and active building blocks for mid-IR photonics. Seminal works on mid-IR optical sensing using integrated platforms will also be reviewed.


Nanophotonics ◽  
2013 ◽  
Vol 2 (2) ◽  
pp. 103-130 ◽  
Author(s):  
Stephanie Law ◽  
Viktor Podolskiy ◽  
Daniel Wasserman

AbstractSurface plasmon polaritons and their localized counterparts, surface plasmons, are widely used at visible and near-infrared (near-IR) frequencies to confine, enhance, and manipulate light on the subwavelength scale. At these frequencies, surface plasmons serve as enabling mechanisms for future on-chip communications architectures, high-performance sensors, and high-resolution imaging and lithography systems. Successful implementation of plasmonics-inspired solutions at longer wavelengths, in the mid-infrared (mid-IR) frequency range, would benefit a number of highly important technologies in health- and defense-related fields that include trace-gas detection, heat-signature sensing, mimicking, and cloaking, and source and detector development. However, the body of knowledge of visible/near-IR frequency plasmonics cannot be easily transferred to the mid-IR due to the fundamentally different material response of metals in these two frequency ranges. Therefore, mid-IR plasmonic architectures for subwavelength light manipulation require both new materials and new geometries. In this work we attempt to provide a comprehensive review of recent approaches to realize nano-scale plasmonic devices and structures operating at mid-IR wavelengths. We first discuss the motivation for the development of the field of mid-IR plasmonics and the fundamental differences between plasmonics in the mid-IR and at shorter wavelengths. We then discuss early plasmonics work in the mid-IR using traditional plasmonic metals, illuminating both the impressive results of this work, as well as the challenges arising from the very different behavior of metals in the mid-IR, when compared to shorter wavelengths. Finally, we discuss the potential of new classes of mid-IR plasmonic materials, capable of mimicking the behavior of traditional metals at shorter wavelengths, and allowing for true subwavelength, and ultimately, nano-scale confinement at long wavelengths.


Nanophotonics ◽  
2017 ◽  
Vol 6 (6) ◽  
pp. 1329-1342 ◽  
Author(s):  
Ren-Jye Shiue ◽  
Dmitri K. Efetov ◽  
Gabriele Grosso ◽  
Cheng Peng ◽  
Kin Chung Fong ◽  
...  

AbstractTwo-dimensional materials have emerged as promising candidates to augment existing optical networks for metrology, sensing, and telecommunication, both in the classical and quantum mechanical regimes. Here, we review the development of several on-chip photonic components ranging from electro-optic modulators, photodetectors, bolometers, and light sources that are essential building blocks for a fully integrated nanophotonic and quantum photonic circuit.


Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Jolly Xavier ◽  
Deshui Yu ◽  
Callum Jones ◽  
Ekaterina Zossimova ◽  
Frank Vollmer

Abstract Quantum-enhanced sensing and metrology pave the way for promising routes to fulfil the present day fundamental and technological demands for integrated chips which surpass the classical functional and measurement limits. The most precise measurements of optical properties such as phase or intensity require quantum optical measurement schemes. These non-classical measurements exploit phenomena such as entanglement and squeezing of optical probe states. They are also subject to lower detection limits as compared to classical photodetection schemes. Biosensing with non-classical light sources of entangled photons or squeezed light holds the key for realizing quantum optical bioscience laboratories which could be integrated on chip. Single-molecule sensing with such non-classical sources of light would be a forerunner to attaining the smallest uncertainty and the highest information per photon number. This demands an integrated non-classical sensing approach which would combine the subtle non-deterministic measurement techniques of quantum optics with the device-level integration capabilities attained through nanophotonics as well as nanoplasmonics. In this back drop, we review the underlining principles in quantum sensing, the quantum optical probes and protocols as well as state-of-the-art building blocks in quantum optical sensing. We further explore the recent developments in quantum photonic/plasmonic sensing and imaging together with the potential of combining them with burgeoning field of coupled cavity integrated optoplasmonic biosensing platforms.


2019 ◽  
Vol 5 (6) ◽  
pp. eaaw8794 ◽  
Author(s):  
Abijith S. Kowligy ◽  
Henry Timmers ◽  
Alexander J. Lind ◽  
Ugaitz Elu ◽  
Flavio C. Cruz ◽  
...  

Probing matter with light in the mid-infrared provides unique insight into molecular composition, structure, and function with high sensitivity. However, laser spectroscopy in this spectral region lacks the broadband or tunable light sources and efficient detectors available in the visible or near-infrared. We overcome these challenges with an approach that unites a compact source of phase-stable, single-cycle, mid-infrared pulses with room temperature electric field–resolved detection at video rates. The ultrashort pulses correspond to laser frequency combs that span 3 to 27 μm (370 to 3333 cm−1), and are measured with dynamic range of >106 and spectral resolution as high as 0.003 cm−1. We highlight the brightness and coherence of our apparatus with gas-, liquid-, and solid-phase spectroscopy that extends over spectral bandwidths comparable to thermal or infrared synchrotron sources. This unique combination enables powerful avenues for rapid detection of biological, chemical, and physical properties of matter with molecular specificity.


Nanophotonics ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 3781-3804
Author(s):  
Jinghan He ◽  
Hong Chen ◽  
Jin Hu ◽  
Jingan Zhou ◽  
Yingmu Zhang ◽  
...  

AbstractAlthough the first lasers invented operated in the visible, the first on-chip devices were optimized for near-infrared (IR) performance driven by demand in telecommunications. However, as the applications of integrated photonics has broadened, the wavelength demand has as well, and we are now returning to the visible (Vis) and pushing into the ultraviolet (UV). This shift has required innovations in device design and in materials as well as leveraging nonlinear behavior to reach these wavelengths. This review discusses the key nonlinear phenomena that can be used as well as presents several emerging material systems and devices that have reached the UV–Vis wavelength range.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Shanshan Chen ◽  
Zhiguang Liu ◽  
Huifeng Du ◽  
Chengchun Tang ◽  
Chang-Yin Ji ◽  
...  

AbstractKirigami, with facile and automated fashion of three-dimensional (3D) transformations, offers an unconventional approach for realizing cutting-edge optical nano-electromechanical systems. Here, we demonstrate an on-chip and electromechanically reconfigurable nano-kirigami with optical functionalities. The nano-electromechanical system is built on an Au/SiO2/Si substrate and operated via attractive electrostatic forces between the top gold nanostructure and bottom silicon substrate. Large-range nano-kirigami like 3D deformations are clearly observed and reversibly engineered, with scalable pitch size down to 0.975 μm. Broadband nonresonant and narrowband resonant optical reconfigurations are achieved at visible and near-infrared wavelengths, respectively, with a high modulation contrast up to 494%. On-chip modulation of optical helicity is further demonstrated in submicron nano-kirigami at near-infrared wavelengths. Such small-size and high-contrast reconfigurable optical nano-kirigami provides advanced methodologies and platforms for versatile on-chip manipulation of light at nanoscale.


Sign in / Sign up

Export Citation Format

Share Document