scholarly journals Thermally robust ring-shaped chromium perfect absorber of visible light

Nanophotonics ◽  
2018 ◽  
Vol 7 (11) ◽  
pp. 1827-1833 ◽  
Author(s):  
Inki Kim ◽  
Sunae So ◽  
Ahsan Sarwar Rana ◽  
Muhammad Qasim Mehmood ◽  
Junsuk Rho

AbstractA number of light-absorbing devices based on plasmonic materials have been reported, and their device efficiencies (or absorption) are high enough to be used in real-life applications. Many light-absorbing applications such as thermophotovoltaics and energy-harvesting and energy-sensing devices usually require high-temperature durability; unfortunately, noble metals used for plasmonics are vulnerable to heat. As an alternative, refractory plasmonics has been introduced using refractory metals such as tungsten (3422°C) and transition metal nitrides such as titanium nitride (2930°C). However, some of these materials are not easy to handle for device fabrications owing to their ultra-high melting point. Here, we propose a light absorber based on chromium (Cr), which is heat tolerant due to its high melting temperature (1907°C) and is compatible with fabrication using conventional semiconductor manufacturing processes. The fabricated device has >95% average absorption of visible light (500–800 nm) independent of polarization states. To verify its tolerance of heat, the absorber was also characterized after annealing at 600°C. Because of its compactness, broadband operational wavelength, and heat tolerance, this Cr perfect absorber will have applications in high-temperature photonic devices such as solar thermophotovoltaics.

Alloy Digest ◽  
1970 ◽  
Vol 19 (12) ◽  

Abstract CRM MOLYBDENUM-50 RHENIUM is a high-melting-point alloy for applications such as electronics tube components, electrical contacts, thermionic converters, thermocouples, heating elements and rocket thrusters. All products are produced by powder metallurgy. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as creep. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: Mo-11. Producer or source: Chase Brass & Copper Company Inc..


Alloy Digest ◽  
1970 ◽  
Vol 19 (8) ◽  

Abstract CRM RHENIUM is a commercially pure, high-melting-point metal for applications such as electronics tube components, electrical contacts, thermionic converters, thermocouples, heating elements and rocket thrusters. All products are produced by powder metallurgy. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as creep. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: Re-1. Producer or source: Chase Brass & Copper Company Inc..


Alloy Digest ◽  
1970 ◽  
Vol 19 (11) ◽  

Abstract PLATINUM is a soft, ductile, white metal which can be readily worked either hot or cold. It has a wide range of industrial applications because of its excellent corrosion and oxidation resistance and its high melting point. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: Pt-1. Producer or source: Matthey Bishop Inc..


2020 ◽  
Vol 16 ◽  
Author(s):  
Yuxue Wei ◽  
Honglin Qin ◽  
Jinxin Deng ◽  
Xiaomeng Cheng ◽  
Mengdie Cai ◽  
...  

Introduction: Solar-driven photocatalytic hydrogen production from water splitting is one of the most promising solutions to satisfy the increasing demands of a rapidly developing society. CdS has emerged as a representative semiconductor photocatalyst due to its suitable band gap and band position. However, the poor stability and rapid charge recombination of CdS restrict its application for hydrogen production. The strategy of using a cocatalyst is typically recognized as an effective approach for improving the activity, stability, and selectivity of photocatalysts. In this review, recent developments in CdS cocatalysts for hydrogen production from water splitting under visible-light irradiation are summarized. In particular, the factors affecting the photocatalytic performance and new cocatalyst design, as well as the general classification of cocatalysts, are discussed, which includes a single cocatalyst containing noble-metal cocatalysts, non-noble metals, metal-complex cocatalysts, metal-free cocatalysts, and multi-cocatalysts. Finally, future opportunities and challenges with respect to the optimization and theoretical design of cocatalysts toward the CdS photocatalytic hydrogen evolution are described. Background: Photocatalytic hydrogen evolution from water splitting using photocatalyst semiconductors is one of the most promising solutions to satisfy the increasing demands of a rapidly developing society. CdS has emerged as a representative semiconductor photocatalyst due to its suitable band gap and band position. However, the poor stability and rapid charge recombination of CdS restrict its application for hydrogen production. The strategy of using a cocatalyst is typically recognized as an effective approach for improving the activity, stability, and selectivity of photocatalysts. Methods: This review summarizes the recent developments in CdS cocatalysts for hydrogen production from water splitting under visible-light irradiation. Results: Recent developments in CdS cocatalysts for hydrogen production from water splitting under visible-light irradiation are summarized. The factors affecting the photocatalytic performance and new cocatalyst design, as well as the general classification of cocatalysts, are discussed, which includes a single cocatalyst containing noble-metal cocatalysts, non-noble metals, metal-complex cocatalysts, metal-free cocatalysts, and multi-cocatalysts. Finally, future opportunities and challenges with respect to the optimization and theoretical design of cocatalysts toward the CdS photocatalytic hydrogen evolution are described. Conclusion: The state-of-the-art CdS for producing hydrogen from photocatalytic water splitting under visible light is discussed. The future opportunities and challenges with respect to the optimization and theoretical design of cocatalysts toward the CdS photocatalytic hydrogen evolution are also described.


2021 ◽  
Author(s):  
Junli Chang ◽  
Liping Jiang ◽  
Guangzhao Wang ◽  
Yuhong Huang ◽  
Hong Chen

The optical absorption performance of the perovskite FAPbI3 in the visible-light range is significantly improved by constructing a CdS/FAPbI3 heterostructure.


Nanomaterials ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 525
Author(s):  
Joe Shields ◽  
Carlota Ruiz de Galarreta ◽  
Jacopo Bertolotti ◽  
C. David Wright

Materials of which the refractive indices can be thermally tuned or switched, such as in chalcogenide phase-change alloys, offer a promising path towards the development of active optical metasurfaces for the control of the amplitude, phase, and polarization of light. However, for phase-change metasurfaces to be able to provide viable technology for active light control, in situ electrical switching via resistive heaters integral to or embedded in the metasurface itself is highly desirable. In this context, good electrical conductors (metals) with high melting points (i.e., significantly above the melting point of commonly used phase-change alloys) are required. In addition, such metals should ideally have low plasmonic losses, so as to not degrade metasurface optical performance. This essentially limits the choice to a few noble metals, namely, gold and silver, but these tend to diffuse quite readily into phase-change materials (particularly the archetypal Ge2Sb2Te5 alloy used here), and into dielectric resonators such as Si or Ge. In this work, we introduce a novel hybrid dielectric/plasmonic metasurface architecture, where we incorporated a thin Ge2Sb2Te5 layer into the body of a cubic silicon nanoresonator lying on metallic planes that simultaneously acted as high-efficiency reflectors and resistive heaters. Through systematic studies based on changing the configuration of the bottom metal plane between high-melting-point diffusive and low-melting-point nondiffusive metals (Au and Al, respectively), we explicitly show how thermally activated diffusion can catastrophically and irreversibly degrade the optical performance of chalcogenide phase-change metasurface devices, and how such degradation can be successfully overcome at the design stage via the incorporation of ultrathin Si3N4 barrier layers between the gold plane and the hybrid Si/Ge2Sb2Te5 resonators. Our work clarifies the importance of diffusion of noble metals in thermally tunable metasurfaces and how to overcome it, thus helping phase-change-based metasurface technology move a step closer towards the realization of real-world applications.


1992 ◽  
Vol 7 (10) ◽  
pp. 2747-2755 ◽  
Author(s):  
C.G. McKamey ◽  
P.F. Tortorelli ◽  
J.H. DeVan ◽  
C.A. Carmichael

MoSi2 is a promising high-temperature material with low density (6.3 g/cm3), high melting point (2020 °C), and good oxidation resistance at temperatures to about 1900 °C. However, in the intermediate temperature range between 400 and 600 °C, it is susceptible to a “pest” reaction which causes catastrophic disintegration by a combination of oxidation and fracture. In this study, we have used polycrystalline MoSi2, produced by arc-casting of the pure elements and by cold and hot pressing of alloy powders, to characterize the pest reaction and to determine the roles of composition, grain or phase boundaries, and physical defects on the oxidation and fracture of specimens exposed to air at 500 °C. It was found that pest disintegration occurs through transport of oxygen into the interior of the specimen along pre-existing cracks and/or pores, where it reacts to form MoO3 and SiO2. The internal stress produced during the formation of MoO3 results in disintegration to powder. Near the stoichiometric ratio, the susceptibility to pest disintegration increases with increasing molybdenum content and with decreasing density. Silicon-rich alloys were able to form protective SiO2 and showed no indication of disintegration, even at densities as low as 60%.


Materials ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 1954 ◽  
Author(s):  
Can Cao ◽  
Yongzhi Cheng

In this paper, a plasmonic perfect absorber (PPA) based on a silicon nanorod resonator (SNRR) for visible light is proposed and investigated numerically. The proposed PPA is only a two-layer nanostructure consisting of a SNRR periodic array and metal substrate. The perfect absorption mainly originates from excitation of the localized surface plasmon resonance (LSPR) mode in the SNRR structure. The absorption properties of this design can be adjusted by varying the radius (r) and height (h) of the SNRR structure. What is more, the stronger quad-band absorption can be achieved by combing four different radius of the SNRR in one period as a super unit-cell. Numerical simulation indicates that the designed quad-band PPA can achieve the absorbance of 99.99%, 99.8%, 99.8%, and 92.2% at 433.5 THz, 456 THz, 482 THz, and 504.5 THz, respectively. Further simulations show that the proposed PPA is polarization-insensitive for both transverse electric (TE) and transverse magnetic (TM) modes. The proposed PPA can be a desirable candidate for some potential applications in detecting, sensing, and visible spectroscopy.


Author(s):  
Laura Silvestroni ◽  
Diletta Sciti

The IV and V group transition metals borides, carbides, and nitrides are widely known as ultra-high temperature ceramics (UHTCs), owing to their high melting point above 2500°C. These ceramics possess outstanding physical and engineering properties, such as high hardness and strength, low electrical resistivity and good chemical inertness which make them suitable structural materials for applications under high heat fluxes. Potential applications include aerospace manufacturing; for example sharp leading edge parts on hypersonic atmospheric re-entry vehicles, rocket nozzles, and scramjet components, where operating temperatures can exceed 3000°C. The extremely high melting point and the low self-diffusion coefficient make these ceramics very difficult to sinter to full density: temperatures above 2000°C and the application of pressure are necessary conditions. However these processing parameters lead to coarse microstructures, with mean grain size of the order of 20 µm and trapped porosity, all features which prevent the achievement of the full potential of the thermo-mechanical properties of UHTCs. Several activities have been performed in order to decrease the severity of the processing conditions of UHTCs introducing sintering additives, such as metals, nitrides, carbides or silicides. In general the addition of such secondary phases does decrease the sintering temperature, but some additives have some drawbacks, especially during use at high temperature, owing to their softening and the following loss of integrity of the material. In this chapter, composites based on borides and carbides of Zr, Hf and Ta were produced with addition of MoSi2 or TaSi2. These silicides were selected as sintering aids owing to their high melting point (>2100°C), their ductility above 1000°C and their capability to increase the oxidation resistance. The microstructure of fully dense hot pressed UHTCs containing 15 vol% of MoSi2 or TaSi2, was characterized by x-ray diffraction, scanning, and transmission electron microscopy. Based on microstructural features detected by TEM, thermodynamical calculations, and the available phase diagrams, a densification mechanism for these composites is proposed. The mechanical properties, namely hardness, fracture toughness, Young’s modulus and flexural strength at room and high temperature, were measured and compared to the properties of other ultra-high temperature ceramics produced with other sintering additives. Further, the microstructural findings were used to furnish possible explanations for the excellent high temperature performances of these composites.


2019 ◽  
Vol 2019 (HiTen) ◽  
pp. 000034-000038 ◽  
Author(s):  
Piers Tremlett ◽  
Phil Elliot ◽  
Pablo Tena

Printed circuit board (PCB) assemblies must fit into unusual spaces for many real-life, high temperature applications such as sensors and actuators. This paper details the design and manufacture of a complex control circuit for a jet engine fuel flow valve. “Origami” was needed to fit this control circuitry into the tight space in the valve, this was achieved using a high temperature flex rigid PCB assembly. The valve was mounted on a hot section of the engine, and the assembly was tested for its capability to operate at 178°C and withstand multiple thermal cycles of −55°C and 175°C during its operational life. Various component joining media were investigated to extend the life of the assembly. The project also developed a one-time programmable (OTP) memory aimed at up to 300°C operation for on board memory to provide calibration data or boot memory for high temperature microcontrollers or processors. The device was based on Micro-Electro-Mechanical Systems (MEMS) technology.


Sign in / Sign up

Export Citation Format

Share Document