scholarly journals Novel layered 2D materials for ultrafast photonics

Nanophotonics ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 1743-1786 ◽  
Author(s):  
Shi Li ◽  
Cong Wang ◽  
Yu Yin ◽  
Elfed Lewis ◽  
Pengfei Wang

AbstractA range of new 2D materials have recently been reported, including topological insulators, transition-metal dichalcogenides, black phosphorus, MXenes, and metal-organic frameworks, which have demonstrated high optical nonlinearity and Pauli blocking for widespread use as saturable absorbers in pulsed lasers. 2D materials are emerging as a promising platform for ultrashort-pulse fiber laser technology. This review presents a catalog of the various pulsed laser applications based on the series of emerging 2D materials. In addition, novel optical devices using layered materials, such as optical modulators, optical switches, and all-optical devices, are also included. It is anticipated that the development of 2D materials will intensify in the future, providing potentially new and wide-ranging efficacy for 2D materials in ultrafast photonic technology.

Nanomaterials ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1778
Author(s):  
Aojie Zhang ◽  
Zihao Wang ◽  
Hao Ouyang ◽  
Wenhao Lyu ◽  
Jingxuan Sun ◽  
...  

Owing to their extraordinary physical and chemical properties, two-dimensional (2D) materials have aroused extensive attention and have been widely used in photonic and optoelectronic devices, catalytic reactions, and biomedicine. In particular, 2D materials possess a unique bandgap structure and nonlinear optical properties, which can be used as saturable absorbers in ultrafast lasers. Here, we mainly review the top-down and bottom-up methods for preparing 2D materials, such as graphene, topological insulators, transition metal dichalcogenides, black phosphorus, and MXenes. Then, we focus on the ultrafast applications of 2D materials at the typical operating wavelengths of 1, 1.5, 2, and 3 μm. The key parameters and output performance of ultrafast pulsed lasers based on 2D materials are discussed. Furthermore, an outlook regarding the fabrication methods and the development of 2D materials in ultrafast photonics is also presented.


2017 ◽  
Vol 42 (21) ◽  
pp. 4279 ◽  
Author(s):  
Hao Chen ◽  
Jinde Yin ◽  
Jingwei Yang ◽  
Xuejun Zhang ◽  
Mengli Liu ◽  
...  

Nanophotonics ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 2215-2231 ◽  
Author(s):  
Xing Liu ◽  
Qun Gao ◽  
Yang Zheng ◽  
Dong Mao ◽  
Jianlin Zhao

AbstractTransition-metal dichalcogenides (TMDCs) and black phosphorus (BP) are typical 2D materials with layer-dependent bandgaps, which are emerging as promising saturable absorption materials for pulsed fiber lasers. In this review, we discuss the nonlinear saturable absorption properties of TMDCs and BP, and summarize the recent progress of saturable absorbers from fabrication methods to incorporation strategies. The performances of saturable absorbers and the properties of Q-switched/mode-locked fiber lasers at different wavelengths are summarized and compared to give a comprehensive insight to optical modulators based on TMDCs/BP, and to promote their practical applications in nonlinear optics.


2021 ◽  
Vol 3 (1) ◽  
pp. 272-278
Author(s):  
Pilar G. Vianna ◽  
Aline dos S. Almeida ◽  
Rodrigo M. Gerosa ◽  
Dario A. Bahamon ◽  
Christiano J. S. de Matos

The scheme illustrates a monolayer transition-metal dichalcogenide on an epsilon-near-zero substrate. The substrate near-zero dielectric constant is used as the enhancement mechanism to maximize the SHG nonlinear effect on monolayer 2D materials.


Author(s):  
Sai Manoj Gali ◽  
David Beljonne

Transition Metal Dichalcogenides (TMDCs) are emerging as promising two-dimensional (2D) materials. Yet, TMDCs are prone to inherent defects such as chalcogen vacancies, which are detrimental to charge transport. Passivation of...


Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 601
Author(s):  
Dinh-Tuan Nguyen ◽  
Hsiang-An Ting ◽  
Yen-Hsun Su ◽  
Mario Hofmann ◽  
Ya-Ping Hsieh

The success of van-der-Waals electronics, which combine large-scale-deposition capabilities with high device performance, relies on the efficient production of suitable 2D materials. Shear exfoliation of 2D materials’ flakes from bulk sources can generate 2D materials with low amounts of defects, but the production yield has been limited below industry requirements. Here, we introduce additive-assisted exfoliation (AAE) as an approach to significantly increase the efficiency of shear exfoliation and produce an exfoliation yield of 30%. By introducing micrometer-sized particles that do not exfoliate, the gap between rotor and stator was dynamically reduced to increase the achievable shear rate. This enhancement was applied to WS2 and MoS2 production, which represent two of the most promising 2D transition-metal dichalcogenides. Spectroscopic characterization and cascade centrifugation reveal a consistent and significant increase in 2D material concentrations across all thickness ranges. Thus, the produced WS2 films exhibit high thickness uniformity in the nanometer-scale and can open up new routes for 2D materials production towards future applications.


Nanoscale ◽  
2021 ◽  
Author(s):  
Conor Patrick Cullen ◽  
Cormac Ó Coileáin ◽  
John B McManus ◽  
Oliver Hartwig ◽  
David McCloskey ◽  
...  

Group-10 transition metal dichalcogenides (TMDs) are rising in prominence within the highly innovative field of 2D materials. While PtS2 has been investigated for potential electronic applications, due to its high...


2017 ◽  
Vol 29 (43) ◽  
Author(s):  
Vidya Kochat ◽  
Amey Apte ◽  
Jordan A. Hachtel ◽  
Hiroyuki Kumazoe ◽  
Aravind Krishnamoorthy ◽  
...  

2019 ◽  
Vol 116 (42) ◽  
pp. 20844-20849 ◽  
Author(s):  
Cong Su ◽  
Zongyou Yin ◽  
Qing-Bo Yan ◽  
Zegao Wang ◽  
Hongtao Lin ◽  
...  

Two-dimensional van der Waals materials have rich and unique functional properties, but many are susceptible to corrosion under ambient conditions. Here we show that linear alkylamines n-CmH2m+1NH2, with m = 4 through 11, are highly effective in protecting the optoelectronic properties of these materials, such as black phosphorus (BP) and transition-metal dichalcogenides (TMDs: WS2, 1T′-MoTe2, WTe2, WSe2, TaS2, and NbSe2). As a representative example, n-hexylamine (m = 6) can be applied in the form of thin molecular monolayers on BP flakes with less than 2-nm thickness and can prolong BP’s lifetime from a few hours to several weeks and even months in ambient environments. Characterizations combined with our theoretical analysis show that the thin monolayers selectively sift out water molecules, forming a drying layer to achieve the passivation of the protected 2D materials. The monolayer coating is also stable in air, H2 annealing, and organic solvents, but can be removed by certain organic acids.


Micromachines ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 92
Author(s):  
Hongyan Yang ◽  
Yunzheng Wang ◽  
Zian Cheak Tiu ◽  
Sin Jin Tan ◽  
Libo Yuan ◽  
...  

In the advancement of photonics technologies, all-optical systems are highly demanded in ultrafast photonics, signal processing, optical sensing and optical communication systems. All-optical devices are the core elements to realize the next generation of photonics integration system and optical interconnection. Thus, the exploration of new optoelectronics materials that exhibit different optical properties is a highlighted research direction. The emerging two-dimensional (2D) materials such as graphene, black phosphorus (BP), transition metal dichalcogenides (TMDs) and MXene have proved great potential in the evolution of photonics technologies. The optical properties of 2D materials comprising the energy bandgap, third-order nonlinearity, nonlinear absorption and thermo-optics coefficient can be tailored for different optical applications. Over the past decade, the explorations of 2D materials in photonics applications have extended to all-optical modulators, all-optical switches, an all-optical wavelength converter, covering the visible, near-infrared and Terahertz wavelength range. Herein, we review different types of 2D materials, their fabrication processes and optical properties. In addition, we also summarize the recent advances of all-optical modulation based on 2D materials. Finally, we conclude on the perspectives on and challenges of the future development of the 2D material-based all-optical devices.


Sign in / Sign up

Export Citation Format

Share Document