scholarly journals Relative sea-level rise and land subsidence in Oceania from tide gauge and satellite GPS

2020 ◽  
Vol 9 (1) ◽  
pp. 175-193
Author(s):  
Alberto Boretti

AbstractThe relative and absolute sea-level patterns in the five LTT tide gauge stations of Oceania, Fremantle, and Sydney in Australia, Auckland, and Dunedin in New Zealand, and Honolulu in the Hawaii Islands, United States of America, are analyzed first based on tide gauge and GPS time series. The average relative rate of rise is +1.306 mm/yr., the average acceleration is +0.00490 mm/yr2, and the average absolute rate of rise is +0.125 mm/yr. This result is consistent with the result for Japan and the West Coast of the Americas. All the LTT tide gauges of the Pacific consistently show a small sea-level rise, with a significant contribution by subsidence, and negligible acceleration. This result is well-matched by the land increase, rather than shrinking, of the Pacific atolls’ islands recently highlighted by other researchers. Two case studies for locations where there are no LTT tide gauges are then provided. In Tuvalu, over the short time window 1977 to present, the relative rate of rise is +1.902 mm/yr., biased by low ESO water levels, and subsidence, but the absolute rate of rise is +0.157 mm/yr. In Adelaide, the relative rate of rise of the sea level is less than 2.3 mm/yr. with an overwhelming contribution by subsidence of 2.1 mm/yr. The thermosteric effect is thus less than 0.2 mm/yr. The sea-level acceleration is also small negative in Adelaide, −0.01936 mm/yr2.

2020 ◽  
Author(s):  
Amin Shoari Nejad ◽  
Andrew C. Parnell ◽  
Alice Greene ◽  
Brian P. Kelleher ◽  
Gerard McCarthy

Abstract. We analysed multiple tide gauges from the east coast of Ireland over the period 1938–2018. We validated the different time series against each other and performed a missing value imputation exercise, which enabled us to produce a homogenised record. The recordings of all tide gauges were found to be in good agreement between 2003–2015, though this was markedly less so from 2016 to the present. We estimate the sea level rise in Dublin port for this period at 10 mm yr−1. The rate over the longer period of 1938–2015 was 1.67 mm yr−1 which is in good agreement with the global average. We found that the rate of sea level rise in the longer term record is cyclic with some extreme upward and downward trends. However, starting around 1980, Dublin has seen significantly higher rates that have been always positive since 1996, and this is mirrored in the surrounding gauges. Furthermore, our analysis indicates an increase in sea level variability since 1980. Both decadal rates and continuous time rates are calculated and provided with uncertainties in this paper.


Atmosphere ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 95
Author(s):  
Phil J. Watson

This paper provides an Extreme Value Analysis (EVA) of the hourly water level record at Fort Denison dating back to 1915 to understand the statistical likelihood of the combination of high predicted tides and the more dynamic influences that can drive ocean water levels higher at the coast. The analysis is based on the Peaks-Over-Threshold (POT) method using a fitted Generalised Pareto Distribution (GPD) function to estimate extreme hourly heights above mean sea level. The analysis highlights the impact of the 1974 East Coast Low event and rarity of the associated measured water level above mean sea level at Sydney, with an estimated return period exceeding 1000 years. Extreme hourly predictions are integrated with future projections of sea level rise to provide estimates of relevant still water levels at 2050, 2070 and 2100 for a range of return periods (1 to 1000 years) for use in coastal zone management, design, and sea level rise adaptation planning along the NSW coastline. The analytical procedures described provide a step-by-step guide for practitioners on how to develop similar baseline information from any long tide gauge record and the associated limitations and key sensitivities that must be understood and appreciated in applying EVA.


2019 ◽  
Vol 11 (3) ◽  
pp. 277 ◽  
Author(s):  
Suresh Palanisamy Vadivel ◽  
Duk-jin Kim ◽  
Jungkyo Jung ◽  
Yang-Ki Cho ◽  
Ki-Jong Han ◽  
...  

Vertical land motion at tide gauges influences sea level rise acceleration; this must be addressed for interpreting reliable sea level projections. In recent years, tide gauge records for the Eastern coast of Korea have revealed rapid increases in sea level rise compared with the global mean. Pohang Tide Gauge Station has shown a +3.1 cm/year sea level rise since 2013. This study aims to estimate the vertical land motion that influences relative sea level rise observations at Pohang by applying a multi-track Persistent Scatter Interferometric Synthetic Aperture Radar (PS-InSAR) time-series analysis to Sentinel-1 SAR data acquired during 2015–2017. The results, which were obtained at a high spatial resolution (10 m), indicate vertical ground motion of −2.55 cm/year at the Pohang Tide Gauge Station; this was validated by data from a collocated global positioning system (GPS) station. The subtraction of InSAR-derived subsidence rates from sea level rise at the Pohang Tide Gauge Station is 6 mm/year; thus, vertical land motion significantly dominates the sea level acceleration. Natural hazards related to the sea level rise are primarily assessed by relative sea level changes obtained from tide gauges; therefore, tide gauge records should be reviewed for rapid vertical land motion along the vulnerable coastal areas.


2020 ◽  
Vol 12 (3) ◽  
pp. 350
Author(s):  
Guoquan Wang ◽  
Xin Zhou ◽  
Kuan Wang ◽  
Xue Ke ◽  
Yongwei Zhang ◽  
...  

We have established a stable regional geodetic reference frame using long-history (13.5 years on average) observations from 55 continuously operated Global Navigation Satellite System (GNSS) stations adjacent to the Gulf of Mexico (GOM). The regional reference frame, designated as GOM20, is aligned in origin and scale with the International GNSS Reference Frame 2014 (IGS14). The primary product from this study is the seven-parameters for transforming the Earth-Centered-Earth-Fixed (ECEF) Cartesian coordinates from IGS14 to GOM20. The frame stability of GOM20 is approximately 0.3 mm/year in the horizontal directions and 0.5 mm/year in the vertical direction. The regional reference frame can be confidently used for the time window from the 1990s to 2030 without causing positional errors larger than the accuracy of 24-h static GNSS measurements. Applications of GOM20 in delineating rapid urban subsidence, coastal subsidence and faulting, and sea-level rise are demonstrated in this article. According to this study, subsidence faster than 2 cm/year is ongoing in several major cities in central Mexico, with the most rapid subsidence reaching to 27 cm/year in Mexico City; a large portion of the Texas and Louisiana coasts are subsiding at 3 to 6.5 mm/year; the average sea-level-rise rate (with respect to GOM20) along the Gulf coast is 2.6 mm/year with a 95% confidence interval of ±1 mm/year during the past five decades. GOM20 provides a consistent platform to integrate ground deformational observations from different remote sensing techniques (e.g., GPS, InSAR, LiDAR, UAV-Photogrammetry) and ground surveys (e.g., tide gauge, leveling surveying) into a unified geodetic reference frame and enables multidisciplinary and cross-disciplinary research.


Ocean Science ◽  
2015 ◽  
Vol 11 (4) ◽  
pp. 617-628 ◽  
Author(s):  
Q. H. Luu ◽  
P. Tkalich ◽  
T. W. Tay

Abstract. Sea level rise due to climate change is non-uniform globally, necessitating regional estimates. Peninsular Malaysia is located in the middle of Southeast Asia, bounded from the west by the Malacca Strait, from the east by the South China Sea (SCS), and from the south by the Singapore Strait. The sea level along the peninsula may be influenced by various regional phenomena native to the adjacent parts of the Indian and Pacific oceans. To examine the variability and trend of sea level around the peninsula, tide gauge records and satellite altimetry are analyzed taking into account vertical land movements (VLMs). At annual scale, sea level anomalies (SLAs) around Peninsular Malaysia on the order of 5–25 cm are mainly monsoon driven. Sea levels at eastern and western coasts respond differently to the Asian monsoon: two peaks per year in the Malacca Strait due to South Asian–Indian monsoon; an annual cycle in the remaining region mostly due to the East Asian–western Pacific monsoon. At interannual scale, regional sea level variability in the range of ±6 cm is correlated with El Niño–Southern Oscillation (ENSO). SLAs in the Malacca Strait side are further correlated with the Indian Ocean Dipole (IOD) in the range of ±5 cm. Interannual regional sea level falls are associated with El Niño events and positive phases of IOD, whilst rises are correlated with La Niña episodes and negative values of the IOD index. At seasonal to interannual scales, we observe the separation of the sea level patterns in the Singapore Strait, between the Raffles Lighthouse and Tanjong Pagar tide stations, likely caused by a dynamic constriction in the narrowest part. During the observation period 1986–2013, average relative rates of sea level rise derived from tide gauges in Malacca Strait and along the east coast of the peninsula are 3.6±1.6 and 3.7±1.1 mm yr−1, respectively. Correcting for respective VLMs (0.8±2.6 and 0.9±2.2 mm yr−1), their corresponding geocentric sea level rise rates are estimated at 4.4±3.1 and 4.6±2.5 mm yr−1. The geocentric rates are about 25 % faster than those measured at tide gauges around the peninsula; however, the level of uncertainty associated with VLM data is relatively high. For the common period between 1993 and 2009, geocentric sea level rise values along the Malaysian coast are similar from tide gauge records and satellite altimetry (3.1 and 2.7 mm yr−1, respectively), and arguably correspond to the global trend.


2019 ◽  
Vol 38 (1) ◽  
pp. 179-184 ◽  
Author(s):  
Albert Parker ◽  
Clifford Ollier

AbstractOver the past decades, detailed surveys of the Pacific Ocean atoll islands show no sign of drowning because of accelerated sea-level rise. Data reveal that no atoll lost land area, 88.6% of islands were either stable or increased in area, and only 11.4% of islands contracted. The Pacific Atolls are not being inundated because the sea level is rising much less than was thought. The average relative rate of rise and acceleration of the 29 long-term-trend (LTT) tide gauges of Japan, Oceania and West Coast of North America, are both negative, −0.02139 mm yr−1and −0.00007 mm yr−2respectively. Since the start of the 1900s, the sea levels of the Pacific Ocean have been remarkably stable.


Eos ◽  
2016 ◽  
Vol 97 ◽  
Author(s):  
Leah Crane

Tide gauges can help measure sea level change, but their limited locations and short records make it hard to pinpoint trends. Now researchers are evaluating the instruments' limitations.


2018 ◽  
Author(s):  
Molly E. Keogh ◽  
Torbjörn E. Törnqvist

Abstract. Although tide gauges are the primary source of data used to calculate multi-decadal to century-scale rates of relative sea-level change, we question the reliability of tide-gauge data in rapidly subsiding low-elevation coastal zones (LECZs). Tide gauges measure relative sea-level rise (RSLR) with respect to the base of associated benchmarks. Focusing on coastal Louisiana, the largest LECZ in the United States, we find that these benchmarks (n = 35) are anchored an average of 21.5 m below the land surface. Because at least 60 % of subsidence occurs in the top 5–10 m of the sediment column in this area, tide gauges in coastal Louisiana do not capture the primary contributor to RSLR. Similarly, GPS stations (n = 10) are anchored an average of > 14.3 m below the land surface and therefore also do not capture shallow subsidence. As a result, tide gauges and GPS stations in coastal Louisiana, and likely in LECZs worldwide, systematically underestimate rates of RSLR as experienced at the land surface. We present an alternative approach that explicitly measures RSLR in LECZs with respect to the land surface and eliminates the need for tide-gauge data. Shallow subsidence is measured by rod surface-elevation table‒marker horizons (RSET-MHs) and added to measurements of deep subsidence from GPS data, plus sea-level rise from satellite altimetry. We show that for a LECZ the size of coastal Louisiana (25,000–30,000 km2), about 40 RSET-MH instruments suffice to collect useful data. Rates of RSLR obtained from this approach are substantially higher than rates as inferred from tide-gauge data. We therefore conclude that LECZs may be at higher risk of flooding, and within a shorter time horizon, than previously assumed.


2016 ◽  
Vol 59 (3) ◽  
Author(s):  
Marco Olivieri ◽  
Giorgio Spada

<p>Exploiting the Delaunay interpolation, we present a newly implemented 2-D sea-level reconstruction from coastal sea-level observations to open seas, with the aim of characterizing the spatial variability of the rate of sea-level change. To test the strengths and weaknesses of this method and to determine its usefulness in sea-level interpolation, we consider the case studies of the Baltic Sea and of the Pacific Ocean. In the Baltic Sea, a small basin well sampled by tide gauges, our reconstructions are successfully compared with absolute sea-level observations from altimetry during 1993-2011. The regional variability of absolute sea level observed across the Pacific Ocean, however, cannot be reproduced. We interpret this result as the effect of the uneven and sparse tide gauge data set and of the composite vertical land movements in and around the region. Useful considerations arise that can serve as a basis for developing sophisticated approaches.</p>


Author(s):  
D. Zhou ◽  
W. Sun ◽  
Y. Fu ◽  
X. Zhou

<p><strong>Abstract.</strong> The ground vertical movement of the tide gauges around the Bohai sea was firstly analyzed by using the observation data from 2009 to 2017 of the nine co-located GNSS stations. It was found that the change rate of ground vertical motion of four stations was in the same order of magnitude as the sea level change. In particular, the land subsidence rate of BTGU station reaches 11.47&amp;thinsp;mm/yr, which should be paid special attention to in the analysis of sea level change. Then combined with long-term tide gauges and the satellite altimetry results, the sea level changes in the Bohai sea and adjacent waters from 1993 to 2012 were analyzed. The relative and absolute sea level rise rates of the sea area are 3.81&amp;thinsp;mm/yr and 3.61&amp;thinsp;mm/yr, respectively, both are higher than the global average rate of change. At the same time, it is found that the vertical land motion of tide gauge stations is the main factor causing regional differences in relative sea level changes.</p>


Sign in / Sign up

Export Citation Format

Share Document