Indications of the onset of fiber cutting in low consistency refining using a refiner force sensor: The effect of pulp furnish

2018 ◽  
Vol 33 (1) ◽  
pp. 58-68 ◽  
Author(s):  
R. Harirforoush ◽  
J. Olson ◽  
P. Wild

Abstract Detection of the onset of fiber cutting is beneficial in low consistency refining as it may prevent reduction of average fiber length, optimize fiber quality improvements by operating at gaps just wider than the critical gap, avoid decreasing the strength properties of paper, and increase energy efficiency. The objective of this study is to understand the effect of pulp furnish on measured bar forces and, more specifically, on the detection of fiber cutting. Bar forces, i. e. forces applied to pulp fibers by the refiner bars, are measured with a custom-designed piezoelectric force sensor. Trials were conducted with an AIKAWA 16-in. single-disc refiner using hemlock/balsam softwood thermomechanical pulp, SPF softwood thermomechanical pulp, northern bleached softwood kraft pulp, and aspen hardwood thermomechanical pulp at 3.0 to 3.5 % consistency at rotational speeds of 1200 and 1400 rpm. The power of the time domain signal of the measured forces is introduced as an indicator of the onset of fiber cutting. Our results show that this new fiber cutting metric is a sensitive and reliable metric for determination of fibre cutting for a range of pulp furnishes. The study suggests that the refiner force sensor has potential to be exploited for in-process detection of fiber cutting.

2018 ◽  
Vol 33 (2) ◽  
pp. 210-219
Author(s):  
R. Harirforoush ◽  
J. Olson ◽  
P. Wild

Abstract The effect of plate pattern on forces applied to pulp fibers by refiner bars in low consistency refining is investigated in an AIKAWA 16-inch single-disc refiner. These forces are measured using a custom-built piezoelectric sensor. Trials are conducted using SPF softwood thermomechanical pulp, northern bleached softwood kraft pulp, and aspen hardwood thermomechanical pulp at 3.3 to 3.6 % consistency at rotational speeds of 1200 and 1400 rpm. The pulp is sampled at regular intervals, and the length-weighted fiber length, freeness, tear index, and tensile index are measured for each sample. The results show that the plate with higher bar edge length results in lower mean peak normal and shear forces. The mean peak normal and shear forces at the onset of fiber cutting depend on rotational speed, pulp furnish and plate pattern, and these parameters are lower for a plate pattern with higher bar edge length. In addition, the mean coefficient of friction is a function of plate gap, pulp furnish, and plate pattern. The plate having higher bar edge length results in higher mean coefficient of friction.


TAPPI Journal ◽  
2011 ◽  
Vol 10 (5) ◽  
pp. 21-28 ◽  
Author(s):  
CARL HOUTMAN ◽  
ERIC HORN

Pilot data indicate that wood chip pretreatment with oxalic acid reduced the specific energy required to make thermomechanical pulp. A combined oxalic acid/bisulfite treatment resulted in 21% refiner energy savings and 13% increase in brightness for aspen. A low level of oxalic acid treatment was effective for spruce. Energy savings of 30% was observed with no significant change in strength properties. Adding bisulfite did not significantly increase the brightness of the spruce pulp. For pine, the optimum treatment was a moderate level of oxalic acid, which resulted in 34% energy savings and an increase in strength properties. For all of these treatments 1–3 w/w % carbohydrates were recovered, which can be fermented to produce ethanol. The extract sugar solution contained significant quantities of arabinose.


TAPPI Journal ◽  
2010 ◽  
Vol 9 (7) ◽  
pp. 15-21 ◽  
Author(s):  
JI-YOUNG LEE ◽  
CHUL-HWAN KIM ◽  
JEONG-MIN SEO ◽  
HO-KYUNG CHUNG ◽  
KYUNG-KIL BACK ◽  
...  

Eco-friendly cushioning materials were made with thermomechanical pulps (TMPs) from waste woods collected from local mountains in Korea, using a suction-forming method without physical pressing. The TMP cushions had superior shock-absorbing performance, with lower elastic moduli than expanded polystyrene (EPS) or molded pulp. Even though the TMP cushions made using various suction times had many voids in their inner fiber structure, their apparent densities were a little higher than that of EPS and much lower than that of molded pulp. The addition of cationic starch contributed to an increase in the elastic modulus of the TMP cushions without increasing the apparent density, an effect which was different from that of surface sizing with starch. In the impact test, the TMP cushions showed a more ductile pattern than the brittle EPS. The porosity of the TMP cushion was a little less than that of EPS and much greater than that of molded pulp. The porous structure of the TMP cushions contributed to their excellent thermal insulating capacity, which was equivalent to that of EPS. In summary, the TMP packing cushions showed great potential for surviving external impacts during product distribution.


1995 ◽  
Vol 18 (10) ◽  
pp. 568-572 ◽  
Author(s):  
Yelena S. K. Orlov ◽  
Michael A. Brodsky ◽  
Michael V. Orlov ◽  
Byron J. Allen ◽  
Rex J. Winters

Author(s):  
Chris Waudby ◽  
John Christodoulou

Non-uniform weighted sampling (NUWS) is a simple method for multi-dimensional NMR spectroscopy in which window functions are applied during acquisition by sampling varying numbers of scans across indirect dimensions. While NUWS was previously shown to provide modest increases in sensitivity, here we describe a complementary application to enhance spectral resolution by increasing the sampling of later points of the time domain signal. Moreover, by combining NUWS with carefully constructed apodization functions signal envelopes can be modulated in an arbitrary manner while retaining a uniform noise level, permitting further signal manipulations such as linear prediction and non-uniform sampling (NUS). We leverage this to develop a combined NUWS-NUS scheme for broadband homonuclear decoupling, with substantially increased sensitivity in comparison to constant time experiments.


BioResources ◽  
2020 ◽  
Vol 15 (4) ◽  
pp. 9128-9142
Author(s):  
Byeong-Geol Min ◽  
Ji-Young Lee ◽  
Chul-Hwan Kim ◽  
See-Han Park ◽  
Min-Seok Lee ◽  
...  

Sand casting makes it difficult to manufacture a fine bar plate for low intensity refining. This study introduced a novel technology for manufacturing lightweight fine bar plates and compared the effects to traditional bar plates. The lightweight fine bar plate base was manufactured using a lightweight aluminum alloy and stainless-steel. Because the bars were inserted into the plate vertically without the draft angle, the stock throughput was improved by approximately 27% compared to the sand-casted bar plates. Additionally, the lightweight fine bar plate maximized internal and external fibrillation while minimizing fiber length loss. In conclusion, the lightweight fine bar plate was shown to be more effective in improving the strength properties of paper and reducing energy consumption.


2014 ◽  
Vol 9 (3) ◽  
pp. 155892501400900
Author(s):  
Kristoffer Lund ◽  
Harald Brelid

Cross-linked fluff pulp fibers for use in, for example, acquisition layers in absorption products can be found in the patent literature. Cross-linking improves properties such as the wet resilience of fluff pulp fiber networks. Among the more commonly seen cross-linkers are polycarboxylic acids, such as 1,2,3,4-butanetetracarboxylic acid (BTCA). These acids form ester bonds with the hydroxyl groups in the fiber wall. In this study, softwood kraft pulp fibers were cross-linked with BTCA. The swelling behavior of the fibers and properties related to acquisition in absorption products were studied. It was found that the water retention value (WRV) decreased as a consequence of the introduced cross-linker. After deprotonization of a large part of the introduced carboxylic acids, the WRV increased, but the cross-linker was still able to limit significant swelling of the fiber wall. The wet bulk under load of fiber networks, composed of cross-linked fibers, generally increased with a decrease in WRV. Furthermore, it was found that the property development obtained after a cross-linking reaction with BTCA may be predicted by introducing a relative reaction intensity, RIrel, that takes into account both time and temperature in the curing step. This shows that the time and temperature in the curing step are interchangeable.


2013 ◽  
Vol 273 ◽  
pp. 409-413 ◽  
Author(s):  
Yu Xiang Cao ◽  
Xue Jun Li ◽  
Ling Li Jiang

For the fuzziness of the fault symptoms in motor rotor, this paper proposes a fault diagnostic method which based on the time-domain statistical features and the fuzzy c-means clustering analysis (FCM). This method is to extract the characteristic features of time-domain signal via time-domain statistics and to import the extracted characteristic vector to classifier. And then the fuzzy c-means realizes the classification by confirming the distance among samples, which is based on the degree of membership between the sample and the clustering center. The fault diagnostic cases of motor rotor show that the method which bases on the time-domain statistical features-FCM can detect the rotor fault effectively and distinguish the different types of fault correctly. Therefore, it can be used as an important means of rotor fault identification.


2012 ◽  
Vol 7 (2) ◽  
pp. 155892501200700 ◽  
Author(s):  
Kristoffer Lund ◽  
Karin Sjöström ◽  
Harald Brelid

The importance of hemicelluloses for the papermaking properties of pulp fibers is well documented. In the patent literature, it can be seen that there is also an interest in this type of modification of pulp fibers for use in absorption products. In this study, a Scandinavian softwood kraft pulp and a birch kraft pulp were alkali extracted at 3 different concentrations of NaOH (2%, 4% and 8% NaOH in the suspension). The alkali extraction removed a large part of the hemicelluloses from the pulp fibers and decreased the content of the charged groups. After extraction, the pulps were dried in the form of sheets (approx. 600 g/m2). The alkali extracted pulp fibers exhibited a greater decrease in swelling when re-wetted than untreated pulp. A significant increase in the curl index after extraction with 4% and 8% NaOH was also noted. The tensile strength index of the formed sheets increased at the lowest concentration of NaOH and, at the higher concentrations, a decrease was observed. The pulp sheets were dry defibrated at different defibration intensities and the performance of the resulting pulps in fluff pulp applications was studied. The air-laid fiber networks of softwood pulp fibers showed higher network strength than the networks of birch pulps. The birch pulp extracted at the highest alkali level tended to give the highest network strength. The results from the network strength tests also indicated that the increased curl of the fibers from the softwood pulp extracted at the highest alkali level rendered a more flexible fiber network. In water absorption tests, the alkali treated softwood fibers tended to give networks with a somewhat enhanced water holding capacity under pressure.


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Wenji Zhang ◽  
Moeness G. Amin ◽  
Fauzia Ahmad ◽  
Ahmad Hoorfar ◽  
Graeme E. Smith

Compressive Sensing (CS) provides a new perspective for addressing radar applications requiring large amount of measurements and long data acquisition time; both issues are inherent in through-the-wall radar imaging (TWRI). Most CS techniques applied to TWRI consider stepped-frequency radar platforms. In this paper, the impulse radar two-dimensional (2D) TWRI problem is cast within the framework of CS and solved by the sparse constraint optimization performed on time-domain samples. Instead of the direct sampling of the time domain signal at the Nyquist rate, the Random Modulation Preintegration architecture is employed for the CS projection measurement, which significantly reduces the amount of measurement data for TWRI. Numerical results for point-like and spatially extended targets show that high-quality reliable TWRI based on the CS imaging approach can be achieved with a number of data points with an order of magnitude less than that required by conventional beamforming using the entire data volume.


Sign in / Sign up

Export Citation Format

Share Document