scholarly journals Synthesis and characterisation of lignin-like oligomers as a bio-inspired consolidant for waterlogged archaeological wood

2016 ◽  
Vol 88 (10-11) ◽  
pp. 969-977 ◽  
Author(s):  
Emily McHale ◽  
Susan Braovac ◽  
Calin C. Steindal ◽  
Richard B. Gillis ◽  
Gary G. Adams ◽  
...  

AbstractThe development of new materials for the consolidation of waterlogged archaeological wood from sustainable sources is an important area of research, as the most widely used consolidant today is petroleum based. Ideally a new consolidant will interact with the existing wood structure, ensuring maximum compatibility. Lignin is often the major component remaining in archaeological wood, as it is less susceptible to degradation than holocellulose. Therefore, in order to maximise the potential for interaction with the wood cells, lignin-like oligomers have been synthesized from isoeugenol using a water soluble copper salen catalyst at pH 10, giving a weight average Mw of 1.6 kDa. Analysis by NMR spectroscopy has shown that the oligomers have a lignin-like structure with β-O-4′, β-β′ and β-5′ connections. A 10 w/w% solution of the oligomers in ethyl acetate was found to thoroughly penetrate 1 cm3 samples of waterlogged archaeological wood (density of 0.146 g/mL, maximum water content of 620%) after 14 days impregnation, as determined by FTIR spectroscopy. No impregnation material could be seen by SEM, suggesting that it coats the cell walls upon drying. This indicates that dehydrogenated polymers penetrate waterlogged archaeological wood well and have the potential to be developed into consolidants.

Molecules ◽  
2020 ◽  
Vol 25 (5) ◽  
pp. 1113 ◽  
Author(s):  
Liuyang Han ◽  
Xingling Tian ◽  
Tobias Keplinger ◽  
Haibin Zhou ◽  
Ren Li ◽  
...  

Structural and chemical deterioration and its impact on cell wall mechanics were investigated for visually intact cell walls (VICWs) in waterlogged archaeological wood (WAW). Cell wall mechanical properties were examined by nanoindentation without prior embedding. WAW showed more than 25% decrease of both hardness and elastic modulus. Changes of cell wall composition, cellulose crystallite structure and porosity were investigated by ATR-FTIR imaging, Raman imaging, wet chemistry, 13C-solid state NMR, pyrolysis-GC/MS, wide angle X-ray scattering, and N2 nitrogen adsorption. VICWs in WAW possessed a cleavage of carboxyl in side chains of xylan, a serious loss of polysaccharides, and a partial breakage of β-O-4 interlinks in lignin. This was accompanied by a higher amount of mesopores in cell walls. Even VICWs in WAW were severely deteriorated at the nanoscale with impact on mechanics, which has strong implications for the conservation of archaeological shipwrecks.


2020 ◽  
Author(s):  
D Chen ◽  
PJ Harris ◽  
Ian Sims ◽  
Z Zujovic ◽  
LD Melton

© The Author(s). 2017. Background: Collenchyma serves as a mechanical support tissue for many herbaceous plants. Previous work based on solid-state NMR and immunomicroscopy suggested collenchyma cell walls (CWs) may have similar polysaccharide compositions to those commonly found in eudicotyledon parenchyma walls, but no detailed chemical analysis was available. In this study, compositions and structures of cell wall polysaccharides of peripheral collenchyma from celery petioles were investigated. Results: This is the first detailed investigation of the cell wall composition of collenchyma from any plant. Celery petioles were found to elongate throughout their length during early growth, but as they matured elongation was increasingly confined to the upper region, until elongation ceased. Mature, fully elongated, petioles were divided into three equal segments, upper, middle and lower, and peripheral collenchyma strands isolated from each. Cell walls (CWs) were prepared from the strands, which also yielded a HEPES buffer soluble fraction. The CWs were sequentially extracted with CDTA, Na2CO3, 1 M KOH and 4 M KOH. Monosaccharide compositions of the CWs showed that pectin was the most abundant polysaccharide [with homogalacturonan (HG) more abundant than rhamnogalacturonan I (RG-I) and rhamnogalacturonan II (RG-II)], followed by cellulose, and other polysaccharides, mainly xyloglucans, with smaller amounts of heteroxylans and heteromannans. CWs from different segments had similar compositions, but those from the upper segments had slightly more pectin than those from the lower two segments. Further, the pectin in the CWs of the upper segment had a higher degree of methyl esterification than the other segments. In addition to the anticipated water-soluble pectins, the HEPES-soluble fractions surprisingly contained large amounts of heteroxylans. The CDTA and Na2CO3 fractions were rich in HG and RG-I, the 1 M KOH fraction had abundant heteroxylans, the 4 M KOH fraction was rich in xyloglucan and heteromannans, and cellulose was predominant in the final residue. The structures of the xyloglucans, heteroxylans and heteromannans were deduced from the linkage analysis and were similar to those present in most eudicotyledon parenchyma CWs. Cross polarization with magic angle spinning (CP/MAS) NMR spectroscopy showed no apparent difference in the rigid and semi-rigid polysaccharides in the CWs of the three segments. Single-pulse excitation with magic-angle spinning (SPE/MAS) NMR spectroscopy, which detects highly mobile polysaccharides, showed the presence of arabinan, the detailed structure of which varied among the cell walls from the three segments. Conclusions: Celery collenchyma CWs have similar polysaccharide compositions to most eudicotyledon parenchyma CWs. However, celery collenchyma CWs have much higher XG content than celery parenchyma CWs. The degree of methyl esterification of pectin and the structures of the arabinan side chains of RG-I show some variation in the collenchyma CWs from the different segments. Unexpectedly, the HEPES-soluble fraction contained a large amount of heteroxylans.


Polymers ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 834 ◽  
Author(s):  
Liuyang Han ◽  
Juan Guo ◽  
Kun Wang ◽  
Philippe Grönquist ◽  
Ren Li ◽  
...  

Waterlogged archaeological wood (WAW) artifacts, made of natural biodegradable polymers, are important parts of many precious cultural heritages. It is of great importance to understand the hygroscopic behavior of WAW in different deterioration states for the development of optimal drying processes and choices of safe storage in varying conditions. This was investigated in a case-study using two Hopea (Giam) and two Tectona (Teak) WAW samples collected from the Xiaobaijiao No.1 shipwreck. The deterioration state of WAW was evaluated by the maximum water content (MWC) method and by the cell morphological structure. Both Hopea and Tectona WAW could be classified into moderately and less decayed WAW. The hygroscopic behavior of moderately and less decayed WAW was then comparatively investigated using Dynamic Vapor Sorption (DVS) measurements alongside two sorption fitting models. Compositional analysis and hydroxyl accessibility measurements of WAW cell walls were shown to correlate with the hygroscopicity of WAW in different deterioration states. It was concluded that moderately decayed WAW possessed higher hygroscopicity and hysteresis than less decayed WAW because of the lower relative content of polysaccharides and the higher relative content of lignin, including the slow hydrolysis of O-acetyl groups of xylan and the partial breakage of β-O-4 interlinks, accompanied by an increased hydroxyl accessibility. This work helps in deciding on which consolidation measures are advised for shipwreck restauration, i.e., pretreatments with specific consolidates during wood drying, particularly for wooden artifacts displayed in museums.


2020 ◽  
Author(s):  
D Chen ◽  
PJ Harris ◽  
Ian Sims ◽  
Z Zujovic ◽  
LD Melton

© The Author(s). 2017. Background: Collenchyma serves as a mechanical support tissue for many herbaceous plants. Previous work based on solid-state NMR and immunomicroscopy suggested collenchyma cell walls (CWs) may have similar polysaccharide compositions to those commonly found in eudicotyledon parenchyma walls, but no detailed chemical analysis was available. In this study, compositions and structures of cell wall polysaccharides of peripheral collenchyma from celery petioles were investigated. Results: This is the first detailed investigation of the cell wall composition of collenchyma from any plant. Celery petioles were found to elongate throughout their length during early growth, but as they matured elongation was increasingly confined to the upper region, until elongation ceased. Mature, fully elongated, petioles were divided into three equal segments, upper, middle and lower, and peripheral collenchyma strands isolated from each. Cell walls (CWs) were prepared from the strands, which also yielded a HEPES buffer soluble fraction. The CWs were sequentially extracted with CDTA, Na2CO3, 1 M KOH and 4 M KOH. Monosaccharide compositions of the CWs showed that pectin was the most abundant polysaccharide [with homogalacturonan (HG) more abundant than rhamnogalacturonan I (RG-I) and rhamnogalacturonan II (RG-II)], followed by cellulose, and other polysaccharides, mainly xyloglucans, with smaller amounts of heteroxylans and heteromannans. CWs from different segments had similar compositions, but those from the upper segments had slightly more pectin than those from the lower two segments. Further, the pectin in the CWs of the upper segment had a higher degree of methyl esterification than the other segments. In addition to the anticipated water-soluble pectins, the HEPES-soluble fractions surprisingly contained large amounts of heteroxylans. The CDTA and Na2CO3 fractions were rich in HG and RG-I, the 1 M KOH fraction had abundant heteroxylans, the 4 M KOH fraction was rich in xyloglucan and heteromannans, and cellulose was predominant in the final residue. The structures of the xyloglucans, heteroxylans and heteromannans were deduced from the linkage analysis and were similar to those present in most eudicotyledon parenchyma CWs. Cross polarization with magic angle spinning (CP/MAS) NMR spectroscopy showed no apparent difference in the rigid and semi-rigid polysaccharides in the CWs of the three segments. Single-pulse excitation with magic-angle spinning (SPE/MAS) NMR spectroscopy, which detects highly mobile polysaccharides, showed the presence of arabinan, the detailed structure of which varied among the cell walls from the three segments. Conclusions: Celery collenchyma CWs have similar polysaccharide compositions to most eudicotyledon parenchyma CWs. However, celery collenchyma CWs have much higher XG content than celery parenchyma CWs. The degree of methyl esterification of pectin and the structures of the arabinan side chains of RG-I show some variation in the collenchyma CWs from the different segments. Unexpectedly, the HEPES-soluble fraction contained a large amount of heteroxylans.


2020 ◽  
Author(s):  
Zahari Vinarov ◽  
Gabriela Gancheva ◽  
Nikola Burdzhiev ◽  
Slavka S. Tcholakova

Although surfactants are frequently used in enabling formulations of poorly water-soluble drugs, the link between their structure and drug solubilization capacity is still unclear. We studied the solubilization of the “brick-dust” molecule itraconazole by 16 surfactants and 3 phospholipid:surfactant mixtures. NMR spectroscopy was used to study in more details the drug-surfactant interactions. Very high solubility of itraconazole (up to 3.6 g/L) was measured in anionic surfactant micelles at pH = 3, due to electrostatic attraction between the oppositely charged (at this pH) drug and surfactant molecules. <sup>1</sup>H NMR spectroscopy showed that itraconazole is ionized at two sites (2+ charge) at these conditions: in the phenoxy-linked piperazine nitrogen and in the dioxolane-linked triazole ring. The increase of amphiphile hydrophobic chain length had a markedly different effect, depending on the amphiphile type: the solubilization capacity of single-chain surfactants increased, whereas a decrease was observed for double-chained surfactants (phosphatidylglycerols). The excellent correlation between the chain melting temperatures of phosphatidylglycerols and itraconazole solubilization illustrated the importance of hydrophobic chain mobility. This study provides rules for selection of itraconazole solubilizers among classical single-chain surfactants and phospholipids. The basic physics underpinning the described effects suggests that these rules should be transferrable to other “brick-dust” molecules.


2020 ◽  
Author(s):  
KJ Nunan ◽  
Ian Sims ◽  
A Bacic ◽  
SP Robinson ◽  
GB Fincher

Cell walls have been isolated from the mesocarp of mature grape (Vitis vinifera L.) berries. Tissue homogenates were suspended in 80% (v/v) ethanol to minimise the loss of water-soluble wall components and wet-sieved on nylon mesh to remove cytoplasmic material. The cell wall fragments retained on the sieve were subsequently treated with buffered phenol at pH 7.0, to inactivate any wall-bound enzymes and to dislodge small amounts of cytoplasmic proteins that adhered to the walls. Finally, the wall preparation was washed with chloroform/methanol (1:1, v/v) to remove lipids and dried by solvent exchange. Scanning electron microscopy showed that the wall preparation was essentially free of vascular tissue and adventitious protein of cytoplasmic origin. Compositional analysis showed that the walls consisted of approximately 90% by weight of polysaccharide and less than 10% protein. The protein component of the walls was shown to be rich in arginine and hydroxyproline residues. Cellulose and polygalacturonans were the major constituents, and each accounted for 30-40% by weight of the polysaccharide component of the walls. Substantial varietal differences were observed in the relative abundance of these two polysaccharides. Xyloglucans constituted approximately 10% of the polysaccharide fraction and the remainder was made up of smaller amounts of mannans, heteroxylans, arabinans and galactans.


2020 ◽  
Vol 10 (2) ◽  
pp. 158-162 ◽  
Author(s):  
Humaira Yasmeen Gondal ◽  
Roshan Zamir ◽  
Muhammad Nisar ◽  
Muhammad Iqbal Choudhary

Background: The genus Verbascum is well documented for its antioxidant potential but Verbascum sinaiticum is comparatively less studied plant. The current study was carried out to search for antioxidant nutraceuticals from this species. Objective: To explore the antioxidant potential of Verbascum sinaiticum and to identify its active constituents. Methods: The methanolic extract of air-dried aerial part of the Verbascum sinaiticum was partitioned with hexane, chloroform and ethyl acetate. The water-soluble part of ethyl acetate afforded six phenylethanoid glycosides by repeated chromatography over Sephadex LH-20, silica gel and ODS columns. Antioxidant activity of solvent extracts and isolated constituents were evaluated by DPPH, ABTS and FRAP assays. Results: Six phenylethanoid glycosides was isolated and characterized as Verbascoside, Eukovoside, Martynoside, Jionoside D, Campneoside I and Campneoside II, from the most active fraction. Conclusion: Verbascum sinaiticum demonstrated prospective antioxidant activity. The watersoluble part of EtOAc (WSEAE) was found the most active extract whereas Verbascoside was identified as the most potent constituent. All isolated compounds exhibited significant antioxidant activity whereas their synergistic effect was found prominent in the parent fraction.


2020 ◽  
Vol 6 (2) ◽  
pp. 155-169
Author(s):  
Neeraj Panihar ◽  
Neeru Vasudeva ◽  
Sunil Sharma ◽  
Babu Lal Jangir

Background: Fagopyrum esculentum Moench. is a herb consumed as food and has medicinal value. It is a rich source of bioactive nutrients which cure and prevent many ailments. Traditionally, it is used to treat hypertension, diabetes, constipation, cancer etc. Methods and Objective: Present work illustrates morphological, microscopic and physicochemical parameters of Fagopyrum esculentum seeds as per WHO guidelines, in vitro antioxidant activity; assessed by DPPH scavenging method, hydrogen peroxide scavenging assay and β-carotene linoleic acid bleaching method and study of lipid lowering potential of the ethyl acetate and ethanol extract of seeds on normal diet fed Wistar rats. Results: Morphological studies delineated the triangular shape, dark brown colour, 8 mm length and 6 mm width of the seed. The microscopic examination of the transverse section of seed depicted features like testa or pericarp (seed coat), the endosperm, embryo and sclerenchyma cells. Study of physiochemical parameters exhibited 0.3±0.02% of foreign matter and 1.44±0.51% crude fibre content. Total ash, acid insoluble ash and water soluble ash value were 6.7±1.7%, 1.9±0.23% and 3.9± 0.31% respectively. Alcohol soluble and water soluble extractive value came out to be 65.02± 3.21 mg/g and 12.7±1.24 mg/g respectively. Foaming index was less than 100, swelling index was found to be 0.5±0.01 ml/g. Loss on drying was 4.02±1.27%. Phytochemical screening of ethyl acetate and ethanol extract revealed the presence of alkaloids, carbohydrates, phenolic compounds, phytosterols and flavonoids. Trace amount of heavy metals (arsenic, cadmium, lead, mercury) were determined by atomic absorption spectrophotometer. Pesticide residue analysis confirmed the presence of nontoxic pesticides like dimethipin, hymexazol, phenothrin-2, methoprene, triadimenol, prohydrojasmon- 1, jasmolin ii, triademinol, jasmolin i, prohydrojasmone i, cyromazine in both the extracts by gc-ms spectrometer. The ethyl acetate and ethanol extract has shown significant in-vitro antioxidant activities demonstrated by the DPPH method (IC50 = 94.37±2.51 and 216.04±4.39 μg/ml respectively), hydrogen peroxide scavenging assay (IC50 = 83.72±3.72 and 193.47±5.05 µg/ml respectively) and β-carotene bleaching method (IC50 = 100.67±4.01 and 205.39±2.89 µg/ml respectively). Lipid lowering study performed on Wistar rats demonstrated a significant (p<0.001) decrease in serum Total Cholesterol (TC), Triglyceride (TG) and increase in High Density Lipoprotein (HDL) level as compared to normal group. Both the extracts have shown a non significant difference in the level of TG as compared to standard drug atorvastatin, depicting that the efficacy of extracts is at par with that of standard drug atorvastatin. Conclusion: Pharmacognostical study of the plant can be a very good tool for identification as well as authentication of a herb. Moreover, these parameters may be helpful in the development of monograph of the plant. Pharmacological activity confirmed Fagopyrum esculentum Moench. seed to be a good antioxidant and have lipid lowering potential.


RSC Advances ◽  
2016 ◽  
Vol 6 (88) ◽  
pp. 84712-84721 ◽  
Author(s):  
Maria A. Cardona ◽  
Marina Kveder ◽  
Ulrich Baisch ◽  
Michael R. Probert ◽  
David C. Magri

Two phenyl β-aminobisulfonate ligands characterised by UV-visible absorption, EPR and 1H NMR spectroscopy exhibit evidence for binding with Cu2+ in water and methanol.


Sign in / Sign up

Export Citation Format

Share Document