Excess spectroscopy and its applications in the study of solution chemistry

2020 ◽  
Vol 92 (10) ◽  
pp. 1611-1626 ◽  
Author(s):  
Yaqin Zhang ◽  
Zhiwei Wu ◽  
Yaqian Wang ◽  
Hongyan He ◽  
Zhiwu Yu

AbstractCharacterization of structural heterogeneity of liquid solutions and the pursuit of its nature have been challenging tasks to solution chemists. In the last decade, an emerging method called excess spectroscopy has found applications in this area. The method, combining the merits of molecular spectroscopy and excess thermodynamic functions, shows the ability to enhance the apparent resolution of spectra, provides abundant information concerning solution structures and intermolecular interactions. In this review, the thinking and mathematics of the method, as well as its developments, are presented first. Then, research progress related to the exploration of the method is thoroughly reviewed. The materials are classified into two parts, small-molecular solutions and ionic liquid solutions. Finally, potential challenges and the perspective for further development of the method are discussed.

Author(s):  
Bochao Chen ◽  
Ming Liang ◽  
Qingzhao Wu ◽  
Shan Zhu ◽  
Naiqin Zhao ◽  
...  

AbstractThe development of sodium-ion (SIBs) and potassium-ion batteries (PIBs) has increased rapidly because of the abundant resources and cost-effectiveness of Na and K. Antimony (Sb) plays an important role in SIBs and PIBs because of its high theoretical capacity, proper working voltage, and low cost. However, Sb-based anodes have the drawbacks of large volume changes and weak charge transfer during the charge and discharge processes, thus leading to poor cycling and rapid capacity decay. To address such drawbacks, many strategies and a variety of Sb-based materials have been developed in recent years. This review systematically introduces the recent research progress of a variety of Sb-based anodes for SIBs and PIBs from the perspective of composition selection, preparation technologies, structural characteristics, and energy storage behaviors. Moreover, corresponding examples are presented to illustrate the advantages or disadvantages of these anodes. Finally, we summarize the challenges of the development of Sb-based materials for Na/K-ion batteries and propose potential research directions for their further development.


2017 ◽  
Vol 66 (17) ◽  
pp. 176109
Author(s):  
Sun Xing ◽  
Mo Guang ◽  
Zhao Lin-Zhi ◽  
Dai Lan-Hong ◽  
Wu Zhong-Hua ◽  
...  

Author(s):  
José Miguel Sagüillo Fernández-Vega

I discuss Putnam’s conception of logical truth as grounded in his picture of mathematical practice and ontology. i begin by comparing Putnam’s 1971 Philosophy of Logic with Quine’s homonymous book. Next, Putnam’s changing views on modality are surveyed, moving from the modal pre-formal to the de-modalized formal characterization of logical validity. Section three suggests a complementary view of Platonism and modalism underlying different stages of a dynamic mathematical practice. The final section argues for the pervasive platonistic conception of the working mathematician.


2020 ◽  
Author(s):  
Michael Liem ◽  
Tonny Regensburg-Tuïnk ◽  
Christiaan Henkel ◽  
Hans Jansen ◽  
Herman Spaink

Abstract Objective: Currently the majority of non-culturable microbes in sea water are yet to be discovered, Nanopore offers a solution to overcome the challenging tasks to identify the genomes and complex composition of oceanic microbiomes. In this study we evaluate the utility of Oxford Nanopore Technologies (ONT) sequencing to characterize microbial diversity in seawater from multiple locations. We compared the microbial species diversity of retrieved environmental samples from two different locations and time points.Results: With only three ONT flow cells we were able to identify thousands of organisms, including bacteriophages, from which a large part at species level. It was possible to assemble genomes from environmental samples with Flye. In several cases this resulted in >1 Mbp contigs and in the particular case of a Thioglobus singularis species it even produced a near complete genome. k-mer analysis reveals that a large part of the data represents species of which close relatives have not yet been deposited to the database. These results show that our approach is suitable for scalable genomic investigations such as monitoring oceanic biodiversity and provides a new platform for education in biodiversity.


2021 ◽  
Vol 22 (23) ◽  
pp. 12946
Author(s):  
Ksenija Kogej ◽  
Darja Božič ◽  
Borut Kobal ◽  
Maruša Herzog ◽  
Katarina Černe

In parallel to medical treatment of ovarian cancer, methods for the early detection of cancer tumors are being sought. In this contribution, the use of non-invasive static (SLS) and dynamic light scattering (DLS) for the characterization of extracellular nanoparticles (ENPs) in body fluids of advanced serous ovarian cancer (OC) and benign gynecological pathology (BP) patients is demonstrated and critically evaluated. Samples of plasma and ascites (OC patients) or plasma, peritoneal fluid, and peritoneal washing (BP patients) were analyzed. The hydrodynamic radius (Rh) and the radius of gyration (Rg) of ENPs were calculated from the angular dependency of LS intensity for two ENP subpopulations. Rh and Rg of the predominant ENP population of OC patients were in the range 20–30 nm (diameter 40–60 nm). In thawed samples, larger particles (Rh mostly above 100 nm) were detected as well. The shape parameter ρ of both particle populations was around 1, which is typical for spherical particles with mass concentrated on the rim, as in vesicles. The Rh and Rg of ENPs in BP patients were larger than in OC patients, with ρ ≈ 1.1–2, implying a more elongated/distorted shape. These results show that SLS and DLS are promising methods for the analysis of morphological features of ENPs and have the potential to discriminate between OC and BP patients. However, further development of the methodology is required.


Author(s):  
Jeonghwan Seo ◽  
So-Myeong Lee ◽  
Jae-Hyuk Han ◽  
Na-Hyun Shin ◽  
Yoon Kyung Lee ◽  
...  

The inter-subspecific crossing between indica and japonica subspecies in rice have been utilized to improve yield potential in temperate rice. In this study, a comparative study of the genomic regions in the eight high yielding varieties (HYVs) was conducted with those of the four non-HYV varieties. NGS mapping on the Nipponbare reference genome identified a total of 14 common genomic regions of japonica-originated alleles. Interestingly, the HYVs shared the japonica-originated genomic regions on the nine chromosomes, although they were developed from different breeding programs. A panel of 94 varieties was classified into four varietal groups with the 39 SNP markers from 39 genes residing the japonica-originated genomic regions and 16 additional trait-specific SNPs. As expected, the japonica originated genomic regions were present only in JAP and HYV groups with exceptions for Chr4-1 and Chr4-2. The Wx gene located within Chr6-1 was present in HYV and JAP variety groups, while the yield-related genes were conserved as indica alleles in HYVs. The japonica-originated genomic regions and alleles shared by HYVs can be employed in molecular breeding programs for further development of HYVs in rice.


2014 ◽  
Vol 51 (1) ◽  
pp. 010001
Author(s):  
张素侠 Zhang Suxia ◽  
李方家 Li Fangjia ◽  
刘军 Liu Jun

Materials ◽  
2019 ◽  
Vol 12 (22) ◽  
pp. 3727
Author(s):  
Sara Blomberg ◽  
Niclas Johansson ◽  
Esko Kokkonen ◽  
Jenny Rissler ◽  
Linnéa Kollberg ◽  
...  

An in-depth understanding of the reaction mechanism is required for the further development of Mo-based catalysts for biobased feedstocks. However, fundamental studies of industrial catalysts are challenging, and simplified systems are often used without direct comparison to their industrial counterparts. Here, we report on size-selected bimetallic NiMo nanoparticles as a candidate for a model catalyst that is directly compared to the industrial system to evaluate their industrial relevance. Both the nanoparticles and industrial supported NiMo catalysts were characterized using surface- and bulk-sensitive techniques. We found that the active Ni and Mo metals in the industrial catalyst are well dispersed and well mixed on the support, and that the interaction between Ni and Mo promotes the reduction of the Mo oxide. We successfully produced 25 nm NiMo alloyed nanoparticles with a narrow size distribution. Characterization of the nanoparticles showed that they have a metallic core with a native oxide shell with a high potential for use as a model system for fundamental studies of hydrotreating catalysts for biobased feedstocks.


Sign in / Sign up

Export Citation Format

Share Document