Effect of phytogenics on growth performance, fecal score, blood profiles, fecal noxious gas emission, digestibility, and intestinal morphology of weanling pigs challenged with Escherichia coli K88

2015 ◽  
Vol 18 (3) ◽  
pp. 557-564 ◽  
Author(s):  
S. Mohana Devi ◽  
S.I. Lee ◽  
I.H. Kim

Abstract Phytogenic feed additives have become attractive alternatives for use in animal diets. The objective of the present study was to evaluate the effect of a phytogenic-based feed additive on growth performance, nutrient digestibility, blood profiles, fecal noxious gas emission, and intestinal morphology of weaning pigs after dietary challenge with E. coli K88. A total of 120 crossbred pigs [(Yorkshire × Landrace) × Duroc)] with an initial body weight (BW) of 6.09 ± 0.96 kg (21 d of age) were assigned randomly to 1 of the 4 dietary treatments. Each pen housed 5 pigs, and there were 6 pens/treatment. Treatments included: T1, negative control (without antibiotics); T2, T1 + antibiotic; T3, T1 + 0.05% phytogenics; and T4, T1 + 0.2% commercial mix of organic acids. Overall, the average daily gain (ADG) with the T3 treatment was higher (P<0.05). At wk 1, the apparent total tract digestibility (ATTD) of dry matter (DM) was increased (P<0.05) with T4 treatment. The ATTD of ash with T3 and T4 treatments was greater (P<0.05). At wk 3, pigs fed with the T4 diet had a significantly higher (P<0.05) ATTD of DM. The ATTD of ash and calcium (Ca) was significantly increased (P<0.05) with the T4 treatment. Pigs fed with the T3 diet had a higher (P<0.05) ATTD of phosphorus (P). At wk 6, the ATTD of ash was significantly increased (P<0.05) with the T1 and T3 treatments. The data indicate that phytogenics positively affect growth performance of weaning pigs, indicating that their use as an alternative in the diets of weaning pigs can significantly improve ADG, under challenge with E.coli K88.

Animals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 2232
Author(s):  
Huan Wang ◽  
In-ho Kim

A total of 180, 4-week-old crossbred weaning piglets ((Yorkshire × Landrace) × Duroc; 6.67 ± 1.40 kg) were used in a 42 day experiment to evaluate the effect of dietary probiotics (Lactobacillus plantarum BG0001) on growth performance, nutrient digestibility, blood profile, fecal microbiota, and noxious gas emission. All pigs were randomly allotted to one of four treatment diets in a completely randomized block design. Each treatment had nine replicates with five pigs/pen (mixed sex) Designated dietary treatments were as: (1) basal diet (NC), (2) NC + 0.2% antibiotics (chlortetracycline) (PC), (3) NC + 0.1% L. plantarum BG0001 (Lactobacillus plantarum BG0001) (NC1), (4) NC + 0.2% L. plantarum BG0001 (NC2). On d 42, BW and G:F were lower (p < 0.05) in pigs fed NC diet compared with PC diet and probiotic diets. Throughout this experiment, the average daily gain increased (p < 0.05) in pigs when fed with PC and probiotic diets than the NC diet. The average daily feed intake was higher (p < 0.05) in pigs fed PC diet during day 0–7 and 22–42, and probiotic diets during day 0–7 compared with NC diet, respectively. The Lactobacillus count was increased and Escherichia coli count was decreased (p < 0.05) in the fecal microbiota of pigs fed probiotic diets, and E. coli were decreased (p < 0.05) when fed a PC diet compared with the NC diet on day 21. Moreover, the apparent total tract nutrient digestibility, blood profile, and the concentration of noxious gas emission had no negative effects by the probiotic treatments. In conclusion, dietary supplementation with L. plantarum BG0001 significantly improved the growth performance, increased fecal Lactobacillus, and decreased E. coli counts in weaning pigs.


2014 ◽  
Vol 59 (No. 11) ◽  
pp. 527-535 ◽  
Author(s):  
S. Mohana Devi ◽  
IH Kim

The objective of the present study was to evaluate the effects of MCFA and probiotic (Enterococcus faecium DSM 7134) supplementation on growth performance, nutrient digestibility, blood profiles, faecal score, excreta microbiota, and excreta noxious gas emission in weanling pigs. A total of 140 weanling pigs [(Yorkshire &times; Landrace) &times; Duroc] were allotted to four treatments groups of seven replicates/treatment and five pigs/replicate. The four experimental diets included: CON diet (basal diet); T1 (CON + MCFA 0.2%); T2 (CON + probiotic 0.01%) and T3 (CON + MCFA 0.2% + probiotic 0.01%). Growth performance, average daily gain (ADG), average daily feed intake (ADFI), gain-to-feed ratio (G : F), Nutrient digestibility: dry matter (DM), nitrogen (N), energy were determined along with blood profiles: glucose, blood urea nitrogen (BUN), creatinine, high density lipoprotein (HDL), low density lipoprotein (LDL), total cholesterol, triglyceride, Excreta bacteria: Lactobacillus, E. coli, Excreta gas emission: NH<sub>3</sub>, H<sub>2</sub>S, total mercaptans, acetic acid and faecal scores. Overall, average daily gain (ADG) and G : F in T2 and T3 treatment groups was higher than in T1 and controls. In blood profiles, glucose levels were found to be increased in week two and six in the treatment groups compared to controls. In addition, the nutrient digestibility of DM, N and energy were found to be increased significantly in T2 and T3 when compared to T1 and controls. There was no significant difference observed between the groups for faecal score, microflora and noxious gas emission. In conclusion, dietary MCFA and probiotic supplementation in weanling pigs are efficacious alternatives to antibiotics, and can improve health status and performance.


2019 ◽  
Vol 157 (5) ◽  
pp. 456-468
Author(s):  
V. N. Gouvêa ◽  
M. A. P. Meschiatti ◽  
J. M. M. Moraes ◽  
C. D. A. Batalha ◽  
J. R. R. Dórea ◽  
...  

AbstractThe current study evaluated growth performance and digestion responses of finishing bulls fed diets containing 825 g/kg flint maize [dry matter (DM) basis] ground to medium (1.66 mm; MG) or coarse particle sizes (2.12 mm; CG), with added monensin (26 mg/kg; DM basis; MON) or a blend of essential oils (BEO) + exogenous α-amylase (AM; 90 mg/kg + 560 mg/kg commercial product, respectively, DM basis). In Expt 1, 256 Nellore bulls were blocked by initial body weight (BW) (360 ± 11.7 kg) and assigned to 48 pens in a 2 × 2 factorial arrangement of treatments. Effect of a maize particle size × feed additive interaction was not detected for final BW, DM intake (DMI), average daily gain (ADG) and feed efficiency. The DMI was greater for bulls fed BEO + AM v. MON. Final BW and ADG tended to be greater for bulls fed CG than MG maize. An interaction was detected for hot carcass weight which was 11 kg heavier for bulls fed BEO + AM v. MON in diets containing CG, but not MG particle size. In Expt 2, four ruminally cannulated Nellore steers were offered the same treatments as Expt 1, in a 4 × 4 Latin Square design. Intake of most nutrients was greater for steers fed CG than steers fed MG maize. In summary, feeding bulls CG maize increased growth performance and carcass characteristics compared with MG. The combination of BEO + AM resulted in heavier carcass weights compared with MON supplementation when included in diets containing CG maize.


2021 ◽  
Vol 99 (Supplement_1) ◽  
pp. 193-195
Author(s):  
Vetriselvi Sampath ◽  
Hyun Ju Park ◽  
Yong min Kim ◽  
Je Min Ahn ◽  
Inho Kim

Abstract BACKGROUND: A total of one hundred and forty, 28 d-old weaner pigs [Duroc x (Yorkshire x Landrace)] with initial body weight (BW) of 6.56±1.25kg were used in a six-week treatment (7 replicate pens per treatment; barrows, and 2 gilts/pen) to evaluate the effect of low nutrient density diet supplement with probiotic mixture supplementation on the growth performance, nutrient digestibility, fecal microbial, and gas emission of weaner pigs. RESULTS: Pigs fed low-density diet with probiotic mixture supplementation had linearly increased (P = 0.028, 0.014) the body weight (BW) at weeks 3, and 6. Moreover, average daily gain (ADG) was linearly improved (P=0.018, 0.014, 0.014) at week 3, 6, and overall experiment. However, there were no interactive effects found on the nutrient digestibility of dry matter (DM), nitrogen (N) and energy (E) throughout the experiment. Dietary inclusion of low-density diet with probiotic mixture supplementation has improved the fecal lactobacillus counts linearly, but E. coli was unaffected during the trail. On day 42, Ammonium gas emission was significantly decrease in pigs fed a low-density diet with probiotic mixture supplementation. However, H2S, acetic acid, and CO2 were not significantly affected by the probiotic mixture supplementation diet. CONCLUSION: Low-density diet with probiotic mixture supplementation had positively affected the growth performance, fecal microbial, and fecal gas emission on weaner pigs.


Author(s):  
De Xin Dang ◽  
In Ho Kim

The purpose of this study was to evaluate the effects of dietary supplementation of Quillaja saponin (QS) on growth performance, nutrient digestibility, fecal microbiota, and fecal gas emission in growing pigs. A total of 50 crossbred growing pigs [(Yorkshire × Landrace) × Duroc] with an initial body weight of 23.83 ± 1.95 kg were randomly assigned to 1 of 2 treatments for a 56-day trial with 5 replicate pens per treatment and 5 pigs (2 barrows and 3 gilts) per pen. Dietary treatments including control diet and control diet supplemented with 200 mg/kg QS. The average daily gain was significantly increased during days 0-56, while the fecal ammonia emission on day 56 and fecal coliform bacteria counts on day 28 were significantly decreased in pigs fed with QS containing diet. However, dietary supplementation of QS had no significant effects on apparent total tract digestibility. In conclusion, dietary supplementation of 200 mg/kg QS had beneficial effects on growth performance, fecal microbiota, and fecal gas emission in growing pigs. Considering the carry-over effects, the adaption period should be at least 28 days when supplementing 200 mg/kg QS to the diet of growing pigs for improving the growth performance.


Sign in / Sign up

Export Citation Format

Share Document