Effect of gas counter pressure on shrinkage and residual stress for injection molding process

2017 ◽  
Vol 37 (5) ◽  
pp. 505-520 ◽  
Author(s):  
Wen-Ren Jong ◽  
Shyh-Shin Hwang ◽  
Ming-Chieh Tsai ◽  
Chien-Chou Wu ◽  
Chi-Hung Kao ◽  
...  

Abstract Plastic products are common in contemporary daily lives. In the plastics industry, the injection molding process is advantageous for features such as mass production and stable quality. The problem, however, is that the melt will be affected by the residual stress and shrinkage generated in the process of filling and cooling; hence, defects such as warping, deformation, and sink marks will occur. In order to reduce product deformation and shrinkage during the process of molding, the screw of the injection molding machine will start the packing stage when filling is completed, which continuously pushes the melt into the cavity, thus making up for product shrinkage and improving their appearance, quality, and strength. If the packing pressure is too high, however, the internal residual stress will increase accordingly. This study set out to apply gas counter pressure (GCP) in the injection molding process. By importing gas through the ends of the cavity, the melt was exposed to a melt front pressure, which, together with the packing pressure from the screw, is supposed to reduce product shrinkage. The aim was to investigate the impacts of GCP on the process parameters via the changes in machine feedback data, such as pressure and the remaining injection resin. This study also used a relatively thin plate-shaped product and measurements, such as the photoelastic effect and luminance meter, to probe into the impacts of GCP on product residual stress, while a relatively thick paper-clip-shaped product was used to see the impacts of GCP on shrinkage in thick parts. According to the experimental results, the addition of GCP resulted in increased filling volume, improvement of product weight and stability, and effective reduction of section shrinkage, which was most obvious at the point closest to the gas entrance. The shrinkage of the sections parallel and vertical to the flow direction was proved to be reduced by 32% and 16%, respectively. Moreover, observations made via the polarizing stress viewer and luminance meter showed that the internal residual stress of a product could be effectively reduced by a proper amount of GCP.

2013 ◽  
Vol 347-350 ◽  
pp. 1163-1167
Author(s):  
Ling Bai ◽  
Hai Ying Zhang ◽  
Wen Liu

Moldflow software was used to obtain the best gate location and count. Influence of injection molding processing parameters on sink marks of injection-piece was studied based on orthogonal test. The effects of different process parameters were analyzed and better process parameters were obtained. Results of research show that decreasing melt temperature, mold temperature, the increasing injection time and packing pressure can effectively reduce the sink marks index.


2021 ◽  
Author(s):  
Bikram Solanki ◽  
Hapreet Singh ◽  
Tanuja Sheorey

Abstract Injection molding is an efficient and most economical process employed for the mass production of plastic gears and helps to reduce the processing time and cost required to produce the desired geometry. However, significant process and product qualification of plastic gears face the shrinkage and sink marks issues during cooling and after ejection. In present work, the best gate locations and flow resistance analysis along with a polypropylene (PP) were carried out using Autodesk Moldflow Insight 2019.05. The numerical and experimental study was conducted to evaluate the effect of packing pressure, packing time, and melt temperature on diametric shrinkage, mass, and sink marks of PP gear. The results show that by increasing packing pressure and packing time, the diametric shrinkage decreased but mass increased. However, as the melt temperature increased the diametric shrinkage also increased but the mass decreased. The minimum diametric shrinkage of 0.562% was found in numerical analysis and 1.619% found in an experimental analysis at the same injection molding process parameters. Mostly, the sink marks were observed in the gear surface between hub and dedendum circle.


2018 ◽  
Vol 25 (3) ◽  
pp. 593-601 ◽  
Author(s):  
Jixiang Zhang ◽  
Xiaoyi Yin ◽  
Fengzhi Liu ◽  
Pan Yang

Abstract Aiming at the problem that a thin-walled plastic part easily produces warpage, an orthogonal experimental method was used for multiparameter coupling analysis, with mold structure parameters and injection molding process parameters considered synthetically. The plastic part deformation under different experiment schemes was comparatively studied, and the key factors affecting the plastic part warpage were analyzed. Then the injection molding process was optimized. The results showed that the important order of the influence factors for the plastic part warpage was packing pressure, packing time, cooling plan, mold temperature, and melt temperature. Among them, packing pressure was the most significant factor. The optimal injection molding process schemes reducing the plastic part warpage were melt temperature (260°C), mold temperature (60°C), packing pressure (150 MPa), packing time (2 s), and cooling plan 3. In this situation, the forming plate flatness was better.


2021 ◽  
Vol 36 (2) ◽  
pp. 131-136
Author(s):  
Y. Liu ◽  
L. Cao ◽  
W.-K. Chi ◽  
L.-Y. Zhang ◽  
W.-M. Yang ◽  
...  

Abstract In precision optical applications, plastics thick-walled optical lenses are increasing. Dimensional stability and optical performance are the critical issues that should be addressed for plastic thick-walled lenses. A novel multi-layer counter-pressure injection molding process is proposed in this study. The experimental prism mold with moveable pistons was developed to investigate the effects of layering methods, counter-pressure and their combination on thick-walled optical lenses. The experimental results reveal that counter-pressure injection molding is effective in improving shrinkage, transmittance and refractive index of the thick-walled optical prism. Counter-pressure of the piston provided lower melt velocity and shorter flow path of melt to improve polymer molecules orientation, and also offered continuous holding pressure during the filling stage to eliminate defects such as shrinkage or short shots. The combination of counter-pressure and multi-layer injection molding technology further improved the dimension stability and optical performance of the thick-walled optical lens. Much thinner layers than the final wall thickness of prism ensures shrinkage reduction during the cooling stages. A thick-walled optical prism was fabricated successfully upon applying a multi-layer counter-pressure injection molding process.


Seikei-Kakou ◽  
1993 ◽  
Vol 5 (11) ◽  
pp. 792-799
Author(s):  
Mamoru ISHIJIMA ◽  
Masashi YAMABE ◽  
Hiroaki SHIMODA ◽  
Minoru SHIMBO ◽  
Yasushi MIYANO

2015 ◽  
Vol 1096 ◽  
pp. 366-370
Author(s):  
Yong Cheng Huang ◽  
Hong Bin Liu ◽  
Hai Tao Wu

Considering the importance of the reasonable injection molding technology.Based on the application of moldflow in injection molding of the helmet .By adjusting the mold temperature, melt temperature, injection time, packing pressure, hold time and so on the injection molding process parameters to develop appropriate technology methods to get the best injection molding parameters.


2012 ◽  
Vol 629 ◽  
pp. 576-580
Author(s):  
Lan Fang Jiang ◽  
Hong Liu ◽  
Chang Guo Hu ◽  
Xian Li Chen ◽  
Zhi Jiang Lei

Due to large planar scale and small lateral scale of plastic drawing board, it was easy to cause warpage problem in injection molding. Optimization of injection molding process was taken to reduce residual stress and improve quality. Combining orthogonal experimental method and software Moldflow, analyzed the effect of mold temperature, melt temperature, hold pressure and injection velocity on warpage deformation. It changed multi-objective optimization to single-objective optimization by weighted method. Through range analysis obtained the influence trend between parameters and comprehensive optimal object. Lastly got the optimal combination of injection molding process parameters.


2011 ◽  
Vol 110-116 ◽  
pp. 4227-4233
Author(s):  
Alireza Akbarzadeh ◽  
Mohammad Sadeghi

— Dimensional changes because of shrinkage is one of the most important problems in production of plastic part using injection molding. In this study, effect of injection molding parameters on the shrinkage in polypropylene (PP) and polystyrene (PS) has been investigated. The relationship between input and output of the process is investigated using regression analysis and ANOVA method. To do this, existing data is used. The selected input parameters are melting temperature, injection pressure, packing pressure and packing time. Effect of these parameters on the shrinkage of above mentioned materials is studied using mathematical modeling. For modeling the process, different types of regression equations including linear polynomial, Quadratic polynomial and logarithmic function, are used to interpolate experiment data. Next, using step backward elimination and 95% confidence level, insignificant parameters are eliminated from model. To check validity of the PP model, correlation coefficient of each model is calculated and the best model is selected. The same procedure is repeated for the PS model. Finally, optimum levels of the input parameters that minimize shrinkage, for both materials are determined. Simulated Annealing (SA) algorithm is applied on the developed mathematical models. The optimization results show that the proposed models and algorithm are effective in solving the mentioned problems.


Polymers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 2871
Author(s):  
Paweł Brzęk ◽  
Tomasz Sterzyński

The effects such as warpage, dimensional instability and environmental stress corrosion, due to the presence of residual stresses in polymeric products, are strongly dependent on injection molding conditions. The holding time and holding pressure belongs to most important processing parameters, determining the dimensional stability and properties of injected goods. A new procedure based on a visualization technique was applied, where the levels of residual stresses of the samples were estimated. The experiments were performed for samples produced of translucent methacrylate acrylonitrile butadiene styrene (MABS), a commodity polymer with a high transparency, necessary for the optical visualization of the stress whitening. The samples produced by injecting molding were deformed to a constant elongation, to observe the dependent stress whitening effect subsequently used to evaluate the stress distribution. It was found that depending on the value of the injection holding pressure, various levels of residual stress and its distribution may be observed in MABS samples. These measurements conformed that the applied optical method is an easy-to-perform technique. The possibility to detect the residual stresses over the whole cross-section of the transparent product, without the necessity for local stress determination, is another significant advantage of this investigation procedure.


Sign in / Sign up

Export Citation Format

Share Document