scholarly journals Malting Barley Diseases, Yield and Quality – Responses to Using Various Agro-Technology Regimes

Author(s):  
Tiia Kangor ◽  
Pille Sooväli ◽  
Ylle Tamm ◽  
Ilmar Tamm ◽  
Mati Koppel

Abstract Pyrenophora teres (net blotch) and Cochliobolus sativus (spot blotch), the most widely spread diseases in the Northern Baltic region, have high impact on cereal production. The effect of three levels of fertilisation and two fungicide treatments on the severity of barley diseases, grain yield and quality traits (protein content, test weight, thousand kernel weight (TKW), grading) was tested during a period of three years. Weather conditions during the growing season highly determined disease severity, yield and quality. In addition, the infection level of P. teres was more dependent on fungicide treatment (p ≤ 0.001) and barley variety (p ≤ 0.001) while C. sativus infection was influenced more by fertilisation (p ≤ 0.001) and year x fertilisation interaction (p ≤ 0.001). Fungicide treatment had no influence on grain yield and protein content, but slightly improved TKW (p ≤ 0.05), test weight (p ≤ 0.001) and grading (p ≤ 0.001). However, these quality traits were mostly influenced by barley variety (p ≤ 0.001). TKW and test weight were highest at fertilisation level N80P12K43. The effect of year and fertilisation contributed significantly to the grain protein content. Grain yield and protein content were highest at the maximum fertiliser application (N100P15K54).

1996 ◽  
Vol 10 (3) ◽  
pp. 522-525 ◽  
Author(s):  
Frank A. Manthey ◽  
Gary A. Hareland ◽  
Richard K. Zollinger ◽  
Donna J. Huseby

A field experiment was conducted over five years to determine the effect of season-long kochia interference on oat yield and quality. Kochia interference did not affect oat height, test weight, 500-kernel weight, or groat percentage. Similarly, ash, starch, and total β-glucan percentages in oat groat were not affected by kochia interference. Oat grain yield was reduced in 1991 and 1994 by 30 kochia plants/m2, the highest density. Lipid and protein content were not affected by kochia except in 1992 where protein content was reduced and lipid content was increased by kochia.


2021 ◽  
Vol 25 (02) ◽  
pp. 285-290
Author(s):  
Vladanka Stupar

Agronomic management and environment affect malting barley yield and quality. The objective of this study was to determine optimum agronomic practices (cultivar, fertilization, and seeding rate) for yield and quality of malting barley. A study was conducted during 2012–2014 in the region of Požarevac, southeastern Serbia, to evaluate the weather-dependent effect of seeding rate (S1=350, S2=450 and S3=550 seeds m–2) and nitrogen fertilization rate (N1=45, N2=75, N3=95 and N4=135 kg N ha–1) on the yield and quality of spring malting barley cultivars ('Novosadski 448', 'Novosadski 456', 'Dunavac' and 'Jadran'). Increasing seeding rate had a significantly negative effect on the quality, whereas the effect on yield was dependent upon weather during the growing season. Grain yield and grain protein content significantly increased with an increase in nitrogen rate up to 135 kg N ha–1. The optimum nitrogen rate for the average thousand-kernel weight and percentage of kernels ≥ 2.5 mm in all years was 75 kg N ha–1, and for test weight 105 kg N ha–1. Germinative energy depended on genotype and weather conditions, whereas seeding and nitrogen rates had a significant effect only during the first year. Results indicated that seeding rates above 350 seeds m–2 and nitrogen rates above 75 kg N ha–1 led to substantial grain quality deterioration in barley cultivars. © 2021 Friends Science Publishers


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Abebe Assefa ◽  
Getawey Girmay ◽  
Tesfaye Alemayehu ◽  
Alemu Lakew

Abstract Background Barley (Hordeum vulgare L.) is an annual cereal crop that belongs to the grass family Poaceae of the tribe Triticeae. It is the fifth most important cereal crop after teff, wheat, maize and sorghum in area coverage in Ethiopia. Important malting barley characteristics include kernel size, kernel protein content, extractable malt and diastatic power. Malt barely is an important crop in the study area; however, the productivity is low in the area varying from 15 kg ha−1 to 21 kg ha−1. The aim of the study was to identify high yielding, standard quality and stable malting barley variety to the study areas and similar agro-ecologies. Field experiments were conducted using eight improved malt barely varieties during the main cropping seasons (from the first week of July to end of October) in 2016 and 2017 at two selected sites Dehana (Amede work) and Lalibela (Medagai)) in north east Ethiopia. Data on grain yield and yield related traits, and quality attributes were recorded. Days to 50% heading (DH), and days to 90% maturity (DM) were recorded on plots basis. Plant height (PH, in cm), spike length (SPL, in cm), and number of seeds per spike (SPS) were measured on five randomly selected plants per plot of the central four rows. Mean grain yield (GY; grams of grain produced per plot, converted in kg ha−1), above ground dry biomass or biological yield (BY; dry weight of the above ground harvested biomass grams per plot, in kg ha−1) and thousand grain weight (TGW; weight of 1000 kernels, in grams) were measured on whole plots. Data were analyzed using SAS software program and significance of the mean difference was tested in least significant difference Test (LSD). Result The analysis of variance for grain yield and quality traits showed that the main effects of both genotypes and environments, and their interaction effect, were highly significant (P ≤ 0.01). The environment main effect accounted for 42%, 38% and 50% of the total grain yield, thousand kernel weight and kernel protein content variation, respectively. The average grain yield across varieties varied from 1652 kg ha−1 to 3377 kg ha−1. Conclusions Three malting barley varieties (IBON174/03, EH1847 and Bahati) were found to be relatively high yielding, stable for grain yield and full fill the quality parameters. Therefore, these varieties are recommended for production. A further study is required on agronomic practices and brewing quality attributes in malt barley.


2019 ◽  
Vol 39 (04) ◽  
Author(s):  
Mohammad Yusuf ◽  
Satish Kumar ◽  
A K Dhaka ◽  
Bhagat Singh ◽  
Axay Bhuker

A field experiment conducted during Rabi season of 2017-18 at wheat research farm of CCS Haryana Agricultural University, Hisar, India to study the effect of sowing dates and varieties on yield and quality performance of wheat (Triticum aestivum L.). The experiment was laid out in split plot design with three replications containing four sowing dates viz. 5th November, 25th November, 15th December and 5th January as main plot treatments and seven wheat varieties i.e. HS 562, HD 2967, HD 3086, HI 1544, MACS 6222, WR 544 and WH 1105 as sub plot treatments. On the basis of one year study it was concluded that among sowing dates, 5th November sowing is the most economical and suitable than rest of the sowing dates. 5th November sown crop recorded significantly longer spike (11.7 cm), higher number of effective tillers (98.3 per mrl), grains per spike (48.6), test weight (39.9 g), grain appearance score (8.3), hectoliter weight (82.9 kg/hl), grain yield (5432 kg ha-1) and harvest index (39.0%) compared to rest of the sowing dates, while highest protein content (12.9 %) was observed with 5th January sown crop. Maximum net return (Rs.54, 262 ha-1) and B: C (1.73) were recorded with 5th November sowing. Among the varieties, HI 1544 recorded significantly higher number of effective tillers (94.6 per mrl), grains per spike (48.4), test weight (38.6 g), grain yield (4920 kg ha-1) harvest index (39.2), grain appearance score (8.1) and hectoliter weight (82.0 kg/hl), while variety WH 1105 resulted in longer spike (11.5 cm) and WR 544 in higher protein content (12.6 %) as compared to rest of the varieties. While comparing the interaction of varieties with date of sowing, HI 1544 produced significantly higher grain higher yield (6007 kg ha-1) of wheat sown at 5th November which was statistically at par with WH 1105 (5833 kg ha-1) and HD 3086 (5616 kg ha-1) at same date of sowing. Delayed sowing of HI 1544 from 5th November to 25th November reduced the grain yield by 9.1 per cent; to 15th of December by 21.0 per cent and to 5th January by 42.3 per cent.


2005 ◽  
Vol 85 (4) ◽  
pp. 839-846 ◽  
Author(s):  
William E. May ◽  
Ramona M. Mohr ◽  
Guy P. Lafond ◽  
F. Craig Stevenson

Increased demand for high-quality oat has rekindled interest in improving oat (Avena sativa L.) yield and quality by managing the timing of oat swathing. The objective of this study was to determine the effect of swathing at five levels of kernel moisture on yield and seed quality at Indian Head, SK, and Brandon, MB, from 1997 (Indian Head only) to 2000. The largest benefit to yield and quality was achieved when swathing was delayed from 50 to 41% kernel moisture. Kernel weight, plump seed and groat yield were optimized when kernel moisture was between 36 and 30% moisture content. Dockage, protein content and oil content also improved with later swathing dates. Swathing should not begin until a kernel moisture content of 41% has been reached. After 30% kernel moisture was reached, no improvement in oat yield and quality occurred when swathing was delayed any further. Key words: Avena sativa L., test weight, thin seed, groat yield, protein, germination


Author(s):  
Qingjun Cao, Gang Li, Fentuan Yang, Xiaoli Jiang ◽  
Lamine Diallo, Enping Zhang ◽  
Fanli Kong

Delayed sowing (DS) is a critical factor influencing grain yield and quality under climate change. This study was conducted to determine maize grain yield and quality traits responses to DS and varied genotypes in rain-fed condition, northeast of China. Two typical hybrids ZD958 (higher starch type) and LM33 (higher protein type) and three sowing dates: 30 April (DS0) as normal, 10 May (DS10) and 20 May (DS20) were compared. Results demonstrated maize grain yield, biomass, kernel number per square, thousand kernel weight (TKW), grain nutrition yield, N concentration and grain test weight were significantly reduced by DS. Compared to high protein type LM33, high starch type ZD958 had a higher yield potential and lower yield reduction with delayed sowing. Grain yield loss under DS could be mainly attributed to reduction of the BMP and biomass, thereby leading to the reduction of TKW and kernels number per unit. DS didn’t affected grain nutritional content (starch, protein and oil), while significantly reduced grain nutrition yield of starch, oil and protein with delayed sowing. This study suggests that, early sowing should be recommended to the framers and varieties adjustments maybe a possible approach to reduce and compensate for the loss of yield caused by delayed sowing in rain-fed condition under climate change in NCP.


2009 ◽  
Vol 89 (4) ◽  
pp. 763-773 ◽  
Author(s):  
W E May ◽  
S J Shirtliffe ◽  
D W McAndrew ◽  
C B Holzapfel ◽  
G P Lafond

Traditionally, farmers have delayed seeding to manage wild oat (Avena fatua L.) in tame oat (Avena sativa L.) crops, but this practice can adversely affect grain yield and quality. The objectives of this study were: (1) to evaluate the effectiveness of using high seeding rates with early-seeded oat to maintain grain yield and quality, and (2) to determine an optimum seeding rate to manage wild oat and maximize grain yield and quality. The factors of interest were wild oat density (low and high density), seeding date (early May, mid May, early June and mid June), and tame oat seeding rate (150, 250, 350 and 450 viable seeds m-2). The study was conducted at Indian Head and Saskatoon, SK, in 2002, 2003 and 2004, at Winnipeg, MB, in 2002, and at Morden, MB, in 2003 and 2004. Wild oat biomass, wild oat panicle density and wild oat seed in the harvested sample decreased as seeding rate increased, while tame oat biomass and grain yield increased. Wild oat density ranged between 0 and 100 plants m-2 with averages of 10 plants m-2 in the low density treatment and 27 plants m-2 in the high density treatment. At low seeding rates, grain yield decreased with increasing wild oat density. The difference in grain yield between the two wild oat densities decreased as the seeding rate increased. There was a curvilinear decrease in grain yield as seeding was delayed. A seeding date × seeding rate interaction was noted for test weight, plump seed, thin seed and groat yield. Seed quality improved as seeding rate increased for only the mid-June seeding date. Even though the mid-June test weight increased as the seeding rate increased it was always lower than the early May test weight at any seeding rate. The results from this study established that in the presence of wild oats, early seeding of tame oat is possible providing high seeding rates, 350 plants m-2 are used.Key words: Wild oat competition, wild oat density, wild oat biomass, grain yield, grain quality


2002 ◽  
Vol 82 (3) ◽  
pp. 507-512 ◽  
Author(s):  
H. Wang ◽  
M. R. Fernandez ◽  
F. R. Clarke ◽  
R. M. DePauw ◽  
J. M. Clarke

Although leaf spotting diseases have been reported to have a negative effect on grain yield and seed characteristics of wheat (Triticum spp.), the magnitude of such effects on wheat grown on dryland in southern Saskatchewan is not known. A fungicide experiment was conducted at Swift Current (Brown soil) and Indian Head (Black soil) from 1997 to 1999 to determine the effect of leaf spotting diseases on yield and seed traits of wheat. Two fungicides, Folicur 3.6F and Bravo 500, were applied at different growth stages on three common wheat (Triticum aestivum L.) and three durum wheat (T. turgidum L. var durum) genotypes. Fungicide treatments generally did not affect yield, kernel weight, test weight or grain protein concentration, and these effects were relatively consistent among genotypes. Folicur applied at head emergence in 1997 and at flag leaf emergence and/or head emergence in 1998 increased yield at Indian Head (P < 0.05). Fungicides applied at and before flag leaf emergence tended to increase kernel weight. Grain protein concentration increased only in treatments of Bravo applications at Indian Head in 1998. These results suggested that under the dryland environment and management in southern Saskatchewan leaf spotting diseases generally have a small effect on yield, kernel weight, test weight and protein concentration. Key words: Wheat, leaf spotting diseases, fungicide, yield


2016 ◽  
Vol 12 (2) ◽  
pp. 279-284 ◽  
Author(s):  
SK Sarkar ◽  
MAR Sarkar ◽  
N Islam ◽  
SK Paul

An experiment was conducted at the Agronomy Field Laboratory, Bangladesh Agricultural University, Mymensingh, to study the yield and quality of aromatic fine rice as affected by variety and nutrient management during the period from June to December 2013. The experiment comprised three aromatic fine rice varieties viz. BRRI dhan34, BRRI dhan37 and BRRI dhan38, and eight nutrient managements viz. control (no manures and fertilizers), recommended dose of inorganic fertilizers, cowdung at 10 t ha-1, poultry manure at 5 t ha-1, 50% of recommended dose of inorganic fertilizers + 50% cowdung, 50% of recommended dose of inorganic fertilizers + 50% poultry manure, 75% of recommended dose of inorganic fertilizers + 50% cowdung and 75% of recommended dose of inorganic fertilizers + 50% poultry manure. The experiment was laid out in a randomized complete block design with three replications. The tallest plant (142.7 cm), the highest number of effective tillers hill(10.02), number of grains panicle (152.3), panicle length (-1 -122.71cm), 1000-grain weight (15.55g) and grain yield (3.71 t ha-1) were recorded in BRRI dhan34. The highest grain protein content (8.17%) was found in BRRI dhan34 whereas the highest aroma was found in BRRI dhan37 and BRRI dhan38. The highest number of effective tillers hill(11.59), number of grains panicle (157.6), panicle length (24.31 cm-1-1) and grain yield (3.97 t ha-1) were recorded in the nutrient management of 75% recommended dose of inorganic fertilizers + 50% cowdung (5 t ha-1). The treatment control (no manures and fertilizers) gave the lowest values for these parameters. The highest grain yield (4.18 t ha-1) was found in BRRI dhan34 combined with 75% recommended dose of inorganic fertilizers + 50% cowdung, which was statistically identical to BRRI dhan34 combined with 75% of recommended dose of inorganic fertilizers + 50% poultry manure and the lowest grain yield (2.7 t ha-1) was found in BRRI dhan37 in control (no manures and fertilizers). The highest grain protein content (10.9 %) was obtained in the interaction of BRRI dhan34 with recommended dose of inorganic fertilizers which was as good as that of BRRI dhan38 and 75% of recommended dose of inorganic fertilizers + 50% poultry manure. The highest aroma was found in BRRI dhan38 combined with 75% recommended dose of inorganic fertilizers + 50% cowdung.J. Bangladesh Agril. Univ. 12(2): 279-284, December 2014


Author(s):  
Jindřiška Kučerová

The results of three-year trials (1999 to 2001) conducted with six winter wheat varieties in which was studied the grain yield and parameters of technological quality. Varieties of wheat come from four different localities of the Czech Republic. The most favourable weather conditions, a lot of precipitation and high temperature in the course of ripening from three years were proved in the year 2000. The best grain yield were in 2001 (average of sites 8.84 t/ha) and variety Semper, worst quality, had the highest grain yield of 9.17 t/ha, the least grain yield had Sulamit, best quality (7.94 t/ha). The laboratory analysis revealed negative correlation between grain yield and baking quality. The number of statistically highly significant correlations among bread-making quality parameters too.The negative correlation was of grain yield and grain volume mass (P < 0.05), Zeleny test and protein content taken as a whole for three years (P < 0.01). The correlation of loaf volume, which is the traits of baking quality and Zeleny test (r = 0.6016**), protein content (r = 0.5932**), dough stability (r = 0.2898**) and flour water absorption (r = 0.3632**) was positive (P < 0.01).


Sign in / Sign up

Export Citation Format

Share Document