Expression of full-length human alkylglycerol monooxygenase and fragments in Escherichia coli

Pteridines ◽  
2013 ◽  
Vol 24 (1) ◽  
pp. 111-115 ◽  
Author(s):  
Matthias Mayer ◽  
Markus A. Keller ◽  
Katrin Watschinger ◽  
Gabriele Werner-Felmayer ◽  
Ernst R. Werner ◽  
...  

AbstractAlkylglycerol monooxygenase (AGMO; EC 1.14.16.5) is the only enzyme known to cleave the O-alkyl ether bond of alkylglycerols in humans. It is an integral membrane protein with nine predicted transmembrane domains. We attempted to express and purify full-length and truncated forms of AGMO in Escherichia coli. Full-length AGMO could not be expressed in three different E. coli expression strains, three different expression vectors and several induction systems. We succeeded, however, in expression of three N-terminally strep-tagged truncated forms, named active sites 1, 2 and 3, with 205, 134 and 61 amino acids, respectively. Active site 1 fragment, containing two predicted transmembrane regions, a membrane associated region and all known amino acid residues important for catalytic activity, was not fully soluble even in 8 M urea. Active site 2 containing only one predicted membrane associated domain required 8 M urea for solubilisation and eluted in gel filtration in 1 M urea as a trimer. Active site 3 with no hydrophobic domain eluted in gel filtration in 1 M urea as monomer and dimer. These results show that even truncated forms of AGMO are barely soluble when expressed in E. coli and show a high tendency for aggregation.

2014 ◽  
Vol 70 (7) ◽  
pp. 1907-1913 ◽  
Author(s):  
Jun Ye ◽  
S. Venkadesh Nadar ◽  
Jiaojiao Li ◽  
Barry P. Rosen

The structure of glutaredoxin 2 (Grx2) fromEscherichia colico-crystallized with glutathione (GSH) was solved at 1.60 Å resolution. The structure of a mutant with the active-site residues Cys9 and Cys12 changed to serine crystallized in the absence of glutathione was solved to 2.4 Å resolution. Grx2 has an N-terminal domain characteristic of glutaredoxins, and the overall structure is congruent with the structure of glutathioneS-transferases (GSTs). Purified Grx2 exhibited GST activity. Grx2, which is the physiological electron donor for arsenate reduction byE. coliArsC, was docked with ArsC. The docked structure could be fitted with GSH bridging the active sites of the two proteins. It is proposed that Grx2 is a novel Grx/GST hybrid that functions in two steps of the ArsC catalytic cycle: as a GST it catalyzes glutathionylation of the ArsC–As(V) intermediate and as a glutaredoxin it catalyzes deglutathionylation of the ArsC–As(III)–SG intermediate.


1991 ◽  
Vol 275 (1) ◽  
pp. 1-6 ◽  
Author(s):  
S Chaudhuri ◽  
K Duncan ◽  
L D Graham ◽  
J R Coggins

The lysine residues involved in Schiff-base formation at the active sites of both the 3-dehydroquinase component of the pentafunctional arom enzyme of Neurospora crassa and of the monofunctional 3-dehydroquinase of Escherichia coli were labelled by treatment with 3-dehydroquinate in the presence of NaB3H4. Radioactive peptides were isolated by h.p.l.c. following digestion with CNBr (and in one case after further digestion with trypsin). The sequence established for the N. crassa peptide was ALQHGDVVKLVVGAR, and that for the E. coli peptide was QSFDADIPKIA. An amended nucleotide sequence for the E. coli gene (aroD) that encode 3-dehydroquinase is also presented, along with a revised alignment of the deduced amino acid sequences for the biosynthetic enzymes.


1992 ◽  
Vol 70 (3-4) ◽  
pp. 242-246 ◽  
Author(s):  
J. W. Anderson ◽  
E. B. Waygood ◽  
M. H. Saier Jr. ◽  
J. Reizer

The phosphohydrolysis properties of the following phosphoprotein intermediates of the bacterial phosphoenolpyruvate:sugar phosphotransferase system (PTS) were investigated: enzyme I, HPr, and the IIAGlc domain of the glucose enzyme II of Bacillus subtilis; and IIAGlc (fast and slow forms) of Escherichia coli. The phosphohydrolysis properties were also studied for the site-directed mutant H68A of B. subtilis IIAGlc. Several conclusions were reached. (i) The phosphohydrolysis properties of the homologous phosphoprotein intermediates of B. subtilis and E. coli are similar. (ii) These properties deviate from those of isolated Nδ1- and Nε2-phosphohistidine indicating the participation of neighbouring residues at the active sites of these proteins. (iii) The rates of phosphohydrolysis of the H68A mutant of B. subtilis IIAGlc were reduced compared with the wild-type protein, suggesting that both His-83 and His-68 are present at the active site of wild-type IIAGlc. (iv) The removal of seven N-terminal residues of E. coli IIAGlc reduced the rates of phosphohydrolysis between pH 5 and 8.Key words: phosphoenolpyruvate:sugar phosphotransferase system, phosphoproteins, phosphohistidine, phosphorylation, sugar transport.


2002 ◽  
Vol 9 (1) ◽  
pp. 46-53 ◽  
Author(s):  
W.-G. Son ◽  
T. A. Graham ◽  
V. P. J. Gannon

ABSTRACT Portions of the intimin genes of Escherichia coli O157:H7 strain E319 and of the enteropathogenic E. coli O127:H6 strain E2348/69 were amplified by PCR and cloned into pET-28a(+) expression vectors. The entire 934 amino acids (aa) of E. coli O157:H7 intimin, the C-terminal 306 aa of E. coli O157:H7 intimin, and the C-terminal 311 aa of E. coli O127:H6 intimin were expressed as proteins fused with a six-histidine residue tag (six-His tag) in pET-28a(+). Rabbit antisera raised against the six-His tag-full-length E. coli O157:H7 intimin protein fusion cross-reacted in slot and Western blots with outer membrane protein preparations from the majority of enterohemorrhagic and enteropathogenic E. coli serotypes which have the intimin gene. The E. coli strains tested included isolates from humans and animals which produce intimin typesα (O serogroups 86, 127, and 142), β1 (O serogroups 5, 26, 46, 69, 111, 126, and 128), γ1 (O serogroups 55, 145, and 157), γ2 (O serogroups 111 and 103), and ε (O serogroup 103) and a nontypeable intimin (O serogroup 80), results based on intimin type-specific PCR assays. Rabbit antisera raised against the E. coli O157:H7 C-terminal fusion protein were much more intimin type-specific than those raised against the full-length intimin fusion protein, but some cross-reaction with other intimin types was also observed for these antisera. In contrast, the monoclonal antibody Intγ1.C11, raised against the C-terminal E. coli O157 intimin, reacted only with preparations from intimin γ1-producing E. coli strains such as E. coli O157:H7.


1988 ◽  
Vol 254 (2) ◽  
pp. 427-435 ◽  
Author(s):  
P M Jordan ◽  
S D Thomas ◽  
M J Warren

Porphobilinogen deaminase has been purified and crystallized from an overproducing recombinant strain of Escherichia coli harbouring a hemC-containing plasmid which has permitted the purification of milligram quantities of the enzyme. Determination of the Mr of the enzyme by SDS/polyacrylamide-gel electrophoresis (35,000) and gel filtration (32,000) agrees with the gene-derived Mr of 33,857. The enzyme has a Km of 19 +/- 7 microM, an isoelectric point of 4.5 and an N-terminal sequence NH2-MLDNVLRIAT. The substrate, porphobilinogen, binds to the active-site dipyrromethane cofactor to form three intermediate complexes: ES, ES2 and ES3. The gene-derived primary structure of the E. coli deaminase is compared with that derived from the cDNA of the human enzyme.


1989 ◽  
Vol 3 (2) ◽  
pp. 105-112 ◽  
Author(s):  
T. S. Grewal ◽  
P. J. Lowry ◽  
D. Savva

ABSTRACT A large portion of the human pro-opiomelanocortin (POMC) peptide corresponding to amino acid residues 59–241 has been cloned and expressed in Escherichia coli. A 1·0 kb DNA fragment encoding this peptide was cloned into the expression vectors pUC8 and pUR291. Plasmid pJMBG51 (a pUC8 recombinant) was found to direct the expression of a 24 kDa peptide. The recombinant pUR291 (pJMBG52) was shown to produce a β-galactosidase fusion protein of 140 kDa. Western blot analysis showed that both the 24 kDa and 140 kDa peptides are recognized by antibodies raised against POMC-derived peptides. The β-galactosidase fusion protein has been partially purified from crude E. coli cell lysates using affinity chromatography on p-aminobenzyl-1-thio-β-d-galactopyranoside agarose.


2012 ◽  
Vol 446 (2) ◽  
pp. 311-320 ◽  
Author(s):  
Anders Tryggvesson ◽  
Frida M. Ståhlberg ◽  
Axel Mogk ◽  
Kornelius Zeth ◽  
Adrian K. Clarke

The Clp protease is conserved among eubacteria and most eukaryotes, and uses ATP to drive protein substrate unfolding and translocation into a chamber of sequestered proteolytic active sites. In plant chloroplasts and cyanobacteria, the essential constitutive Clp protease consists of the Hsp100/ClpC chaperone partnering a proteolytic core of catalytic ClpP and noncatalytic ClpR subunits. In the present study, we have examined putative determinants conferring the highly specific association between ClpC and the ClpP3/R core from the model cyanobacterium Synechococcus elongatus. Two conserved sequences in the N-terminus of ClpR (tyrosine and proline motifs) and one in the N-terminus of ClpP3 (MPIG motif) were identified as being crucial for the ClpC–ClpP3/R association. These N-terminal domains also influence the stability of the ClpP3/R core complex itself. A unique C-terminal sequence was also found in plant and cyanobacterial ClpC orthologues just downstream of the P-loop region previously shown in Escherichia coli to be important for Hsp100 association to ClpP. This R motif in Synechococcus ClpC confers specificity for the ClpP3/R core and prevents association with E. coli ClpP; its removal from ClpC reverses this core specificity.


Author(s):  
Nguyen Thi My Trinh ◽  
Tran Linh Thuoc ◽  
Dang Thi Phuong Thao

Background: The recombinant human granulocyte colony stimulating factor con-jugated with polyethylene glycol (PEGylated GCSF) has currently been used as an efficient drug for the treatment of neutropenia caused by chemotherapy due to its long circulating half-life. Previous studies showed that Granulocyte Colony Stimula-ting Factor (GCSF) could be expressed as non-classical Inclusion Bodies (ncIBs), which contained likely correctly folded GCSF inside at low temperature. Therefore, in this study, a simple process was developed to produce PEGylated GCSF from ncIBs. Methods: BL21 (DE3)/pET-GCSF cells were cultured in the LiFlus GX 1.5 L bioreactor and the expression of GCSF was induced by adding 0.5 mM IPTG. After 24 hr of fermentation, cells were collected, resuspended, and disrupted. The insoluble fraction was obtained from cell lysates and dissolved in 0.1% N-lauroylsarcosine solution. The presence and structure of dissolved GCSF were verified using SDS-PAGE, Native-PAGE, and RP-HPLC analyses. The dissolved GCSF was directly used for the con-jugation with 5 kDa PEG. The PEGylated GCSF was purified using two purification steps, including anion exchange chromatography and gel filtration chromatography. Results: PEGylated GCSF was obtained with high purity (~97%) and was finally demonstrated as a form containing one GCSF molecule and one 5 kDa PEG molecule (monoPEG-GCSF). Conclusion: These results clearly indicate that the process developed in this study might be a potential and practical approach to produce PEGylated GCSF from ncIBs expressed in Escherichia coli (E. coli).


Biomolecules ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 255 ◽  
Author(s):  
Sviatlana Smolskaya ◽  
Yaroslav Andreev

More than two decades ago a general method to genetically encode noncanonical or unnatural amino acids (NAAs) with diverse physical, chemical, or biological properties in bacteria, yeast, animals and mammalian cells was developed. More than 200 NAAs have been incorporated into recombinant proteins by means of non-endogenous aminoacyl-tRNA synthetase (aa-RS)/tRNA pair, an orthogonal pair, that directs site-specific incorporation of NAA encoded by a unique codon. The most established method to genetically encode NAAs in Escherichia coli is based on the usage of the desired mutant of Methanocaldococcus janaschii tyrosyl-tRNA synthetase (MjTyrRS) and cognate suppressor tRNA. The amber codon, the least-used stop codon in E. coli, assigns NAA. Until very recently the genetic code expansion technology suffered from a low yield of targeted proteins due to both incompatibilities of orthogonal pair with host cell translational machinery and the competition of suppressor tRNA with release factor (RF) for binding to nonsense codons. Here we describe the latest progress made to enhance nonsense suppression in E. coli with the emphasis on the improved expression vectors encoding for an orthogonal aa-RA/tRNA pair, enhancement of aa-RS and suppressor tRNA efficiency, the evolution of orthogonal EF-Tu and attempts to reduce the effect of RF1.


1976 ◽  
Vol 157 (1) ◽  
pp. 69-76 ◽  
Author(s):  
M A Gordon ◽  
S L Chan ◽  
A J Trevor

Three forms of brain acetylcholinesterase were purified from bovine caudate-nucleus tissue and determined by calibrated gel filtration to have mol.wts. of approx. 120 000 (C), 230 000 (B) and 330 000 (A). [3H]Di-isopropyl phosphorofluoridate (isopropyl moiety labelled) was purified from commercial preparations and its concentration estimated by an enzyme-titration procedure. Brain acetylcholinesterase preparations and enzyme from eel electric tissue were allowed to react with [3H]di-isopropyl phosphorofluridate in phosphate buffer until enzyme activity was inhibited by 98%. Excess of [3H]di-isopropyl phosphorofluoridate that had not reacted was separated from the labelled enzyme protein by gel filtration, or by vacuum filtration or by extensive dialysis. The specificity of active-site labelling was confirmed by use of the enzyme reactivator, pyridine 2-aldoxime. The forms of brain acetylcholinesterase were calculted to contain approximately two (C) four (B) and six (A) active sites per molecule respectively. Acetylcholinesterase (mol.wt. 250 000) from electric-eel tissue was estimated to contain two active sites per molecule. Gradient-gel electrophoresis was used to confirm the estimation of molecular weights of brain acetylcholinesterase forms made by gel filtration. Under the conditions of electrophoresis acetylcholinesterase form A was stable, but form B was converted into a species of approx. 120 000 mol. wt. Similarly, form C of the brain enzyme was converted into a 60 000-mol.wt. form during electrophoresis. These results are in general accord with the suggestion that the multiple forms of brain acetylcholinesterase may be related to the aggregation of a single low-molecular-weight species.


Sign in / Sign up

Export Citation Format

Share Document