Functional Studies on the Promoter Region of the Human GTP Cyclohydrolase I Gene

Pteridines ◽  
1995 ◽  
Vol 6 (3) ◽  
pp. 108-111
Author(s):  
Markus Gütlich ◽  
Klaus Witter ◽  
Gerd Katzenmeier ◽  
Wolfgang Rödl ◽  
Thomas Wernert ◽  
...  

Summary We have isolated genomic clones that contained the gene for human GTP cyclohydrolase I. One clone containing the 5'-regulatory region of this gene was further analysed. It encompassed the first exon, parts of the first intron and about 2.6kb of the promoter region. The transcription start site was localised by rapid amplification of cDNA ends (5'-RACE). The 2.6 kb region upstream of the transcription start site showed promoter activity when ligated upstream of a reporter gene. 5'-truncations of the promoter region increased its activity as long as the CAAT and TATA boxes remained unchanged. Several putative Spl responsive elements were located within a GC-rich region close to the transcription start site.

2003 ◽  
Vol 185 (17) ◽  
pp. 5158-5165 ◽  
Author(s):  
Takayuki Taniya ◽  
Jiro Mitobe ◽  
Shu-ichi Nakayama ◽  
Qi Mingshan ◽  
Kenji Okuda ◽  
...  

ABSTRACT The InvE protein positively regulates the expression of virulence genes ipaBCD in Shigella sonnei. The InvE has significant homology with ParB of plasmid P1, which is known as a plasmid partitioning factor with DNA binding ability. Although the DNA binding activity of InvE has been predicted, it is not known whether the DNA binding activity is necessary for type III secretion system-associated gene expression. In this study, we determined the transcription start site of the icsB-ipaBCD operon (ipa operon) and constructed a series of deletions of the icsB promoter region in the Escherichia coli K-12 background. The deletion study revealed that an 86-bp region upstream of the icsB transcription start site was essential for expression of the ipa operon, where the ParB binding motif (ParB BoxA-like sequence) was observed. Purified glutathione S-transferase-InvE fusion protein bound directly to the −93 to −54 region (designating the icsB transcription start site as nucleotide +1) containing the ParB BoxA-like sequence. These results indicated that InvE bound directly to the promoter region.


2008 ◽  
Vol 190 (15) ◽  
pp. 5224-5229 ◽  
Author(s):  
Jean Bouvier ◽  
Patrick Stragier ◽  
Violette Morales ◽  
Elisabeth Rémy ◽  
Claude Gutierrez

ABSTRACT The Escherichia coli dapB gene encodes one of the enzymes of the biosynthetic pathway leading to lysine and its immediate precursor, diaminopimelate. Expression of dapB is repressed by lysine, but no trans-acting regulator has been identified so far. Our analysis of the dapB regulatory region shows that sequences located in the −81/−118 interval upstream of the transcription start site are essential for full expression of dapB, as well as for lysine repression. Screening a genomic library for a gene that could alleviate lysine repression when present in multicopy led to the recovery of argP, a gene encoding an activating protein of the LysR-type family, known to use lysine as an effector. An argP null mutation strongly decreases dapB transcription that becomes insensitive to lysine. Purified His6-tagged ArgP protein binds with an apparent K d of 35 nM to the dapB promoter in a gel retardation assay, provided that sequences up to −103 are present. In the presence of l-lysine and l-arginine, the binding of ArgP to dapB is partly relieved. These results fit with a model in which ArgP contributes to enhanced transcription of dapB when lysine becomes limiting.


Plants ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 911
Author(s):  
David Zalabák ◽  
Yoshihisa Ikeda

Most of the transcribed genes in eukaryotic cells are interrupted by intervening sequences called introns that are co-transcriptionally removed from nascent messenger RNA through the process of splicing. In Arabidopsis, 79% of genes contain introns and more than 60% of intron-containing genes undergo alternative splicing (AS), which ostensibly is considered to increase protein diversity as one of the intrinsic mechanisms for fitness to the varying environment or the internal developmental program. In addition, recent findings have prevailed in terms of overlooked intron functions. Here, we review recent progress in the underlying mechanisms of intron function, in particular by focusing on unique features of the first intron that is located in close proximity to the transcription start site. The distinct deposition of epigenetic marks and nucleosome density on the first intronic DNA sequence, the impact of the first intron on determining the transcription start site and elongation of its own expression (called intron-mediated enhancement, IME), translation control in 5′-UTR, and the new mechanism of the trans-acting function of the first intron in regulating gene expression at the post-transcriptional level are summarized.


Development ◽  
2001 ◽  
Vol 128 (9) ◽  
pp. 1671-1686 ◽  
Author(s):  
J. Lu ◽  
B. Oliver

Evolutionarily conserved ovo loci encode developmentally regulated, sequence-specific, DNA-binding, C(2)H(2)-zinc-finger proteins required in the germline and epidermal cells of flies and mice. The direct targets of OVO activity are not known. Genetic experiments suggest that ovo acts in the same regulatory network as ovarian tumor (otu), but the relative position of these genes in the pathway is controversial. Three OVO-binding sites exist in a compact regulatory region that controls germline expression of the otu gene. Interestingly, the strongest OVO-binding site is very near the otu transcription start, where basal transcriptional complexes must function. Loss-of-function, gain-of-function and promoter swapping constructs demonstrate that OVO binding near the transcription start site is required for OVO-dependent otu transcription in vivo. These data unambiguously identify otu as a direct OVO target gene and raise the tantalizing possibility that an OVO site, at the location normally occupied by basal components, functions as part of a specialized core promoter.


1987 ◽  
Author(s):  
Corolyn J Collins ◽  
Richard B Levene ◽  
Christina P Ravera ◽  
Marker J Dombalagian ◽  
David M Livingston ◽  
...  

Most patients with von Willebrand's disease appear to have a defect affecting the level of expression of the von Willebrand factor (vWf) gene. Thus, an understanding of the pathogenesis of von Willebrand's disease will require an analysis of the structure and function of the vWf gene in normals and in patients. To begin such analyses, we have screened a human genomic cosmid library with probes obtained from vWf cDNA and isolated a colinear segment spanning ≈175 kb in five overlapping clones. This segment extends ≈25 kb upstream and ≈5 kb downstream of the transcription start and stop sites for vWf mRNA, implying the vWf gene has a length of ≈150 kb. Within one of these clones, the vWf transcription initiation sites have been mapped. A portion of the promoter region has been sequenced, revealing a typical TATA box, a downstream CCAAT box, and a perfect downstream repeat of the 8 base pairs containing the major transcription start site. Primer extension analysis suggests that sequences contained within the downstream repeat of the transcription start site may be used as minor initiation sites in endothelial cells. Transfection studies are underway to evaluate the role of sequences within this promoter region in gene regulatory activity. Comparative restriction analyses of cloned and chromosomal DNA segments strongly suggests that no major alterations ocurred during cloning and that there is only one complete copy of the vWf gene in the human haploid genome. Similar analyses of DNA from vWf-expressing endothelial cells and non-expressing white blood cells suggests that no major rearrangements are associated with vWf gene expression. Finally, cross hybridization patterns among seven mammalian species suggests a strong conservation of genomic sequences encoding the plasma portion of vWf, but a lower degree of conservation of sequences encoding the N terminal region of provWf.


1996 ◽  
Vol 16 (11) ◽  
pp. 6509-6515 ◽  
Author(s):  
T Murata ◽  
Y Kageyama ◽  
S Hirose ◽  
H Ueda

The transcription factor FTZ-F1 is a member of the nuclear hormone receptor superfamily and is transiently expressed during the mid- and late prepupal periods in Drosophila melanogaster. A putative pupal cuticle gene, EDG84A, is expressed slightly following FTZ-F1 expression during the prepupal period and carries a strong FTZ-F1 binding site between bases 100 and 92 upstream of its transcription start site. In this study, EDG84A mRNA was found to be prematurely expressed upon heat induction of FTZ-F1 in prepupae carrying the heat shock promoter-FTZ-F1 cDNA fusion gene construct. Transgenic fly lines having the 0.8-kb region of the EDG84A promoter fused to lacZ expressed the reporter gene in a tissue- and stage-specific manner. Base substitutions in the FTZ-F1 binding site within the 0.8-kb promoter abolished expression of lacZ. These results strongly suggest that the EDG84A gene is a direct target of FTZ-F1. Deletion studies of the cis-regulatory region of the EDG84A gene revealed that space-specific expression in imaginal disc-derived epidermis is controlled by the region between bp -408 and -104 from the transcription start site. The region between bp -408 and -194 is necessary to repress expression in a posterior part of the body, while the region between bp -193 and -104 carries a positive element for activation in an anterior part of the body. These results suggest that FTZ-F1 governs expression of the EDG84A gene in conjunction with putative tissue-specific regulators.


1988 ◽  
Vol 8 (1) ◽  
pp. 42-51 ◽  
Author(s):  
K R Prowse ◽  
H Baumann

The rat alpha 1-acid glycoprotein (AGP) gene is transcriptionally regulated by dexamethasone, interleukin 1 (IL-1), hepatocyte-stimulating factor, and beta 2 interferon. The steroid and peptide hormones stimulate expression of the AGP gene synergistically as well as independently. The regulatory sequence responsible for dexamethasone-stimulated expression has been localized previously to a region that is 120 to 64 base pairs (bp) upstream of the transcription start site (H. Baumann and L. E. Maquat, Mol. Cell. Biol. 6:2551-2561, 1986). To identify the regulatory sequence that is responsive to the peptide hormones, different lengths of the AGP gene 5'-flanking DNA were linked to the chloramphenicol acetyltransferase gene and then assayed for hormone-inducible chloramphenicol acetyltransferase gene expression in transiently transfected HepG2 cells. We demonstrate that an enhancer region that is responsive to IL-1, hepatocyte-stimulating factor, and beta 2 interferon lies within a 142-bp sequence located 5,300 to 5,150 bp upstream of the transcription start site. This distal regulatory region can confer hormone inducibility to a heterologous promoter; exert its affect in either orientation; and function, to a lesser degree, in nonhepatic but IL-1-responsive cells.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 2254-2254
Author(s):  
Susan E. Shetzline ◽  
Joseph Conlon ◽  
Cezary Swider ◽  
Lindsay Thalheim ◽  
Alan M. Gewirtz

Abstract The c-myb proto-oncogene encodes a transcription factor, Myb, which is essential for the growth and survival of normal and malignant hematopoietic cells. We, and others, have previously shown that malignant hematopoietic cells are more dependent on c-Myb function than are normal hematopoietic cells. Based on these findings, we hypothesized that c-Myb regulates a unique set of genes in leukemic cells that are required for their growth. To identify Myb gene targets, we performed a transcriptome analysis using human myeloid leukemic cells engineered to express a conditionally active dominant negative Myb (MERT). Analysis of the microarray data derived from these experiments revealed that when Myb activity was inhibited, neuromedin U (NmU), a neuropeptide involved in energy homeostasis, decreased in expression 5 fold compared to control cells, a result that was confirmed by quantitative real-time PCR. Combined, the microarray and quantitative real-time PCR data suggested that Myb directly regulates NmU gene expression in hematopoietic cells. To address this question in the absence of a formally defined human NmU promoter, we examined the DNA sequence upstream of the predicted transcription start site (as noted in Genbank accession #NM_006681) for potential Myb transcription factor binding motifs. After scanning the DNA sequence (~2kb) upstream of the predicted transcription start site, eleven potential Myb response elements (MREs) were identified. Of these MREs, five were identified as canonical (PyAAC(G/C)G). Our search also identified potential AML1, PU.1, CBP, STAT3, and STAT5 binding motifs within the human NmU promoter region. To determine if any of the potential MREs within the NmU promoter were functional, we first completed in vitro assays using luciferase reporter constructs followed by in vivo assays using chromatin immunoprecipitation (ChIP) assays. The luciferase reporter constructs were generated after we determined the actual transcription start of human NmU by primer extension assays. Using a Fam-labeled NmU specific primer that annealed proximal to the predicted transcription start site, we observed a 20-nucleotide difference between the predicted and actual transcription start of NmU. When all eleven potential MREs within the NmU promoter were upstream of luciferase, a 6-fold increase in luciferase activity was observed compared to empty vector. We next systematically mutated the MREs to determine which one(s) Myb bound directly. Thus far, the in vitro luciferase assay has identified MREs at −446 and −626, which are proximal to NmU’s transcription start as important for Myb-mediated expression. To determine the physiologic relevance of our in vitro studies, we performed ChIP assays. When chromatin from K562 cells, a human myeloid leukemia cell line, was immunoprecipitated with anti-c-Myb, we observed the expected PCR product using primer pairs that flanked select MREs. These same results were obtained in our positive control ChIP experiment in which the chromatin was immunoprecipitated with anti-acetyl histone 4 indicating that the promoter region of NmU is poised for transcription. Further characterization of the regulation of NmU gene expression in normal and malignant hematopoietic cells may yield new clues to Myb’s role in leukemogenesis and could suggest new therapeutic targets in human leukemia cells.


2001 ◽  
Vol 3 (5) ◽  
pp. 485-494 ◽  
Author(s):  
Yu Xia ◽  
Tsunao Saitoh ◽  
Kenji Uéda ◽  
Seigo Tanaka ◽  
Xiaohua Chen ◽  
...  

2018 ◽  
Author(s):  
Christoph S. Börlin ◽  
Nevena Cvetesic ◽  
Petter Holland ◽  
David Bergenholm ◽  
Verena Siewers ◽  
...  

ABSTRACTOne of the fundamental processes that determine cellular fate is regulation of gene transcription. Understanding these regulatory processes is therefore essential for understanding cellular responses to changes in environmental conditions. At the core promoter, the regulatory region containing the transcription start site (TSS), all inputs regulating transcription are integrated. Here, we used Cap Analysis of Gene Expression (CAGE) to analyze the pattern of transcription start sites at four different environmental conditions (limited in ethanol, limited in nitrogen, limited in glucose and limited in glucose under anaerobic conditions) using the Saccharomyces cerevisiae strain CEN.PK113-7D. With this experimental setup we were able to show that the TSS landscape in yeast is stable at different metabolic states of the cell. We also show that the shape index, a characteristic feature of each TSS describing the spatial distribution of transcription initiation events, has a surprisingly strong negative correlation with the measured expression levels. Our analysis supplies a set of high quality TSS annotations useful for metabolic engineering and synthetic biology approaches in the industrially relevant laboratory strain CEN.PK113-7D, and provides novel insights into yeast TSS dynamics and gene regulation.


Sign in / Sign up

Export Citation Format

Share Document