scholarly journals Energy Consumption and GGP in the OECD Countries: A Causality Analysis

2017 ◽  
Vol 10 (1) ◽  
pp. 55-74 ◽  
Author(s):  
Mondiu T. Jaiyesimi ◽  
Tokunbo S. Osinubi ◽  
Lloyd Amaghionyeodiwe

Abstract This study investigated the nature or direction of causality between GDP, electricity consumption and total energy consumption in the OECD. Secondary data was used while both the ordinary least square (OLS) and generalized method of moments (GMM) estimators were employed to test for causality in our model. Our result found the presence of a bi-directional causality between energy consumption and GDP for the total energy demand model and between electricity consumption and GDP for the electricity demand model. By implication, the bi-directional causality in our estimated models suggest that both energy consumption and GDP are important factors in economic development in the OECD. Thus, if misguided policy measures are made to reduce energy consumption it could have a detrimental effect on GDP which will slow down economic growth. A recommendation is for policy makers to concentrate on encouraging energy efficiency as a way to reduce energy and electricity consumption.

Author(s):  
Pramila Dhaubanjar ◽  
Amrit Man Nakarmi ◽  
Sushil B. Bajracharya

This study aims to analyse energy scenarios of residential sector in Panauti Municipality for sustainable energy development and energy security. This study was done by conducting a questionnaire survey, and was supported by secondary data from various sources. Data analysis was carried out with the help of excel and LEAP software. From the results, total energy consumption of Panauti Municipality is 147 TJ in year 2016 with per capita is 4.72GJ and per capita emission 82kg. The main fuel for consumption in residential sector is firewood with share 44% then followed by LPG with 26% of total energy. Cooking is the most energy intensive end-use, accounting 60% of total energy consumption, followed by animal feed preparation 28%. It was seen that total electrification in all end-use can reduce energy demand by 57% and 35% respectively in AEL and SUD scenario and saved fuel import cost about NRs.235 million. in year 2050. Using nationally available electricity ensures energy security and has co-benefit of emission reduction.


2018 ◽  
Vol 211 ◽  
pp. 17006
Author(s):  
Wieslaw Fiebig ◽  
Jakub Wrobel

An innovative method exploiting mechanical resonance in machines drive systems, especially useful in impact machines, has been developed. Accumulation of energy at resonance can be applied to the drive system in a similar way as flywheels in eccentric presses. Under resonance conditions, the total energy consumption of the oscillating mass is equal to the energy lost due the damping forces. Energy accumulated in the oscillator can be several times greater than the energy supplied continuously to the oscillator. The developed method can be used in many applications, especially in impacting machines. Finally, the energy demand of resonance punching press will be compared with the energy demand of eccentric press.


2014 ◽  
Vol 1073-1076 ◽  
pp. 2457-2461
Author(s):  
Chang Sheng Li ◽  
Qing Ling Li ◽  
Zhong Min Lei ◽  
Han Yang ◽  
Hui Qing Qu

These paper investigated the relationship between economics development and energy demands based on Energy Kuznets Curve (EFC) in China. The results show that, the prospects of economics and energy demand in China in further will undergo three important stages to 2050.The peak of energy demand maybe around 2035 and the corresponding total energy demand maybe amount 5.7 billion tce. In 2035, the GDP per capital maybe about 17000 (2005 US$) and the urbanization will reach a relative high level. It is urgent for China to take actions to curb the increasing total energy consumption.


2021 ◽  
Author(s):  
Andrzej Bieniek ◽  
Mariusz Graba ◽  
Jarosław Mamala ◽  
Krzysztof Prażnowski ◽  
Krystian Hennek

The analysis of energy consumption in a hybrid drive system of a passenger car in real road conditions is an important factor determining its operational indicators. The article presents energy consumption analysis of a car equipped with an advanced Plug-in Hybrid Drive System (PHEV), driving in real road conditions on a test section of about 51 km covered in various environmental conditions and seasons. Particular attention was paid to the energy consumption resulting from the cooperation of two independent drive units, analyzed in terms of the total energy expenditure. The energy consumption obtained from fuel and energy collected from the car’s batteries for each run over the total distance of 12,500 km was summarized. The instantaneous values of energy consumption for the hybrid drive per kilometer of distance traveled in car’s real operating conditions range from 0.6 to 1.4 MJ/km, with lower values relating to the vehicle operation only with electric drive. The upper range applies to the internal combustion engine, which increases not only the energy expenditure in the TTW (Tank-to-Wheel) system, but also CO2 emissions to the environment. Based on the experimental data, the curves of total energy consumption per kilometer of the road section traveled were determined, showing a close correlation with the actual operating conditions. Obtained values were compared with homologation data from the WLTP test of the tested passenger car, where the average value of energy demand is 1.1 MJ/km and the CO2 emission is 23 g/km.


2021 ◽  
Vol 6 (2) ◽  
pp. 03-17
Author(s):  
Gazal Dandia ◽  
◽  
Pratheek Sudhakaran ◽  
Chaitali Basu ◽  
◽  
...  

Introduction: High energy consumption by buildings is a great threat to the environment and one of the major causes of climate change. With a population of 1.4 billion people and one of the fastest-growing economies in the world, India is extremely vital for the future of global energy markets. The energy demand for construction activities continues to rise and it is responsible for over one-third of global final energy consumption. Currently, buildings in India account for 35% of total energy consumption and the value is growing by 8% annually. Around 11% of total energy consumption are attributed to the commercial sector. Energy-efficient retrofitting of the built environments created in recent decades is a pressing urban challenge. Presently, most energy-efficient retrofit projects focus mainly on the engineering aspects. In this paper, we evaluate various retrofitting options, such as passive architectural interventions, active technological interventions, or a combination of both, to create the optimum result for the selected building. Methods: Based on a literature study and case examples, we identified various energy-efficient retrofit measures, and then examined and evaluated those as applied to the case study of Awas Bhawan (Rajasthan Housing Board Headquarters), Jaipur, India. For the evaluation, we developed a simulation model using EQuest for each energy measure and calculated the resultant energy savings. Then, based on the cost of implementation and the cost of energy saved, we calculated the payback period. Finally, an optimum retrofit solution was formulated with account for the payback period and ease of installation. Results and discussion: The detailed analysis of various energy-efficient retrofit measures as applied to the case study indicates that the most feasible options for retrofit resulting in optimum energy savings with short payback periods include passive architecture measures and equipment upgrades.


2005 ◽  
Vol 23 (1) ◽  
pp. 1-18 ◽  
Author(s):  
Mustafa Balat

With a young and growing population, low per capita electricity consumption, rapid urbanization and strong economic growth, Turkey for nearly two decades has been one of the fastest growing power markets in the world. Domestic energy consumption accounts for 37% of total energy consumption. For this reason, the renewable sources are very important for Turkey's energy sector. Projections by Turkey's Electricity Generating and Transmission Corporation (TEAS), a public company which owns and operates 15 thermal and 30 hydroelectric plants generating 91% of Turkey's electricity, indicate that rapid (as high as 10% annual) growth in electricity consumption will continue over the next 15 years. Turkey has a total gross hydropower potential of 433 GW, but only 125 GW of the total hydroelectric potential of Turkey can be economically used.


MRS Bulletin ◽  
1993 ◽  
Vol 18 (10) ◽  
pp. 18-25 ◽  
Author(s):  
Wim C. Sinke

The term “solar energy” refers to a wide variety of techniques for using the energy available as sunlight. Well-known examples are active and passive thermal solar energy and photovoltaic solar energy but, strictly speaking, hydropower, wind energy, and biomass are also forms of solar energy. Today, only hydropower is used in significant quantities, covering approximately 6% of the world's energy demand. Traditional use of biomass, mainly in developing countries, accounts for more than 10% of the total energy consumption, but is sometimes left out of statistics because it falls outside the category of organized and commercial use.The global potential for solar energy is huge, since the amount of energy that reaches the earth's surface every year exceeds the total energy consumption by roughly a factor of 10,000. There are, however, various barriers to the large-scale use of solar energy technologies. Most technologies have in common that the power density of the generator is low; in other words, one needs large areas to generate significant amounts of energy. This is especially true for biomass, with typical conversion efficiencies (solar energy to chemical energy) of 1% or less. Further, many solar energy technologies have proved technically feasible, but have yet to be proved economically feasible. Last, but not least, the large-scale use of solar energy requires substantial modification of our global energy supply system, which is based largely on fossil fuels.


2021 ◽  
Vol 293 ◽  
pp. 02061
Author(s):  
Liu Siyang ◽  
Wei Zirui ◽  
Qian Wen ◽  
Chen Yu ◽  
Liu Qian ◽  
...  

Energy demand is closely related to energy price, GDP and population. By using the shortest path algorithm and K-means clustering, we set up the spatial nodes, and carried out the model simulation to predict the energy demand of Yunnan Province. The results show that the total energy consumption of Yunnan Province will still show an upward trend from 2020 to 2015; hydropower silicon integration projects in Yunnan Province, the power supply and demand situation in Yunnan Province will change from oversupply to basic balance between supply and demand, and the role of thermal power in dry season will be played to make the decline of coal consumption tend to be smooth; from 2020 to 2025, Yunnan’s electricity consumption will increase by about 8.02% year-on-year. However, according to the commissioning of some projects, the total electricity consumption in the province will be about 192.9 billion kwh in 2020, with a yearon-year increase of 12.3%.


Jurnal Teknik ◽  
2019 ◽  
Vol 7 (2) ◽  
Author(s):  
Rahma Farah Ningrum

Electricity consumption in the household sector is 37.5% of total energy consumption. In 2017 Basic Electricity Fare (BEF) has increased 4 times. To suppress the high price that must be paid every month from the use of electrical energy and to anticipate the occurrence of energy crisis required a system that can limit the use of electrical energy. Therefore, a system that can control and limit the use of electrical energy. The system uses the arduino as the control center of the model circuit component, then connected to the current-breaker application on the user's smartphone. So with this system people can control and limit the usage of electric current with ease, therefore the savings on electrical energy can be done and also is one way to anticipate the occurrence of energy crisis in the future


Sign in / Sign up

Export Citation Format

Share Document