Injectable hydrogel-based scaffolds for tissue engineering applications

2017 ◽  
Vol 33 (1) ◽  
Author(s):  
Tanya Portnov ◽  
Tiberiu R. Shulimzon ◽  
Meital Zilberman

AbstractHydrogels are highly hydrated materials that may absorb from 10% to 20% up to hundreds of times their dry weight in water and are composed of three-dimensional hydrophilic polymeric networks that are similar to those in natural tissue. The structural integrity of hydrogels depends on cross-links formed between the polymer chains. Hydrogels have been extensively explored as injectable cell delivery systems, owing to their high tissue-like water content, ability to mimic extracellular matrix, homogeneously encapsulated cells, efficient mass transfer, amenability to chemical and physical modifications, and minimally invasive delivery. A variety of naturally and synthetically derived materials have been used to form injectable hydrogels for tissue engineering applications. The current review article focuses on these biomaterials, on the design parameters of injectable scaffolds, and on the

Polymers ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 794 ◽  
Author(s):  
Su Jeong Lee ◽  
Ji Min Seok ◽  
Jun Hee Lee ◽  
Jaejong Lee ◽  
Wan Doo Kim ◽  
...  

Bio-ink properties have been extensively studied for use in the three-dimensional (3D) bio-printing process for tissue engineering applications. In this study, we developed a method to synthesize bio-ink using hyaluronic acid (HA) and sodium alginate (SA) without employing the chemical crosslinking agents of HA to 30% (w/v). Furthermore, we evaluated the properties of the obtained bio-inks to gauge their suitability in bio-printing, primarily focusing on their viscosity, printability, and shrinkage properties. Furthermore, the bio-ink encapsulating the cells (NIH3T3 fibroblast cell line) was characterized using a live/dead assay and WST-1 to assess the biocompatibility. It was inferred from the results that the blended hydrogel was successfully printed for all groups with viscosities of 883 Pa∙s (HA, 0% w/v), 1211 Pa∙s (HA, 10% w/v), and 1525 Pa∙s, (HA, 30% w/v) at a 0.1 s−1 shear rate. Their structures exhibited no significant shrinkage after CaCl2 crosslinking and maintained their integrity during the culture periods. The relative proliferation rate of the encapsulated cells in the HA/SA blended bio-ink was 70% higher than the SA-only bio-ink after the fourth day. These results suggest that the 3D printable HA/SA hydrogel could be used as the bio-ink for tissue engineering applications.


Polymers ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 3154
Author(s):  
Md Mohosin Rana ◽  
Hector De la Hoz Siegler

Poly(N-isopropylacrylamide) (PNIPAm) is a three-dimensional (3D) crosslinked polymer that can interact with human cells and play an important role in the development of tissue morphogenesis in both in vitro and in vivo conditions. PNIPAm-based scaffolds possess many desirable structural and physical properties required for tissue regeneration, but insufficient mechanical strength, biocompatibility, and biomimicry for tissue development remain obstacles for their application in tissue engineering. The structural integrity and physical properties of the hydrogels depend on the crosslinks formed between polymer chains during synthesis. A variety of design variables including crosslinker content, the combination of natural and synthetic polymers, and solvent type have been explored over the past decade to develop PNIPAm-based scaffolds with optimized properties suitable for tissue engineering applications. These design parameters have been implemented to provide hydrogel scaffolds with dynamic and spatially patterned cues that mimic the biological environment and guide the required cellular functions for cartilage tissue regeneration. The current advances on tuning the properties of PNIPAm-based scaffolds were searched for on Google Scholar, PubMed, and Web of Science. This review provides a comprehensive overview of the scaffolding properties of PNIPAm-based hydrogels and the effects of synthesis-solvent and crosslinking density on tuning these properties. Finally, the challenges and perspectives of considering these two design variables for developing PNIPAm-based scaffolds are outlined.


Polymers ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 457 ◽  
Author(s):  
Rodrigo Urruela-Barrios ◽  
Erick Ramírez-Cedillo ◽  
A. Díaz de León ◽  
Alejandro Alvarez ◽  
Wendy Ortega-Lara

Three-dimensional (3D) printing technologies have become an attractive manufacturing process to fabricate scaffolds in tissue engineering. Recent research has focused on the fabrication of alginate complex shaped structures that closely mimic biological organs or tissues. Alginates can be effectively manufactured into porous three-dimensional networks for tissue engineering applications. However, the structure, mechanical properties, and shape fidelity of 3D-printed alginate hydrogels used for preparing tissue-engineered scaffolds is difficult to control. In this work, the use of alginate/gelatin hydrogels reinforced with TiO2 and β-tricalcium phosphate was studied to tailor the mechanical properties of 3D-printed hydrogels. The hydrogels reinforced with TiO2 and β-TCP showed enhanced mechanical properties up to 20 MPa of elastic modulus. Furthermore, the pores of the crosslinked printed structures were measured with an average pore size of 200 μm. Additionally, it was found that as more layers of the design were printed, there was an increase of the line width of the bottom layers due to its viscous deformation. Shrinkage of the design when the hydrogel is crosslinked and freeze dried was also measured and found to be up to 27% from the printed design. Overall, the proposed approach enabled fabrication of 3D-printed alginate scaffolds with adequate physical properties for tissue engineering applications.


MRS Bulletin ◽  
1996 ◽  
Vol 21 (11) ◽  
pp. 52-54 ◽  
Author(s):  
Prabhas V. Moghe

Tissue engineering involves the application of physical and life sciences to develop functional substitutes for dysfunctional organs or tissue structures. From an engineering standpoint, tissues contain two basic components—the cells that are organized into proper units, and the material surrounding the cells, called the extracellular matrix (ECM). A third, frequently overlooked feature essential to the maintenance of the activity of the engineered tissue is the three-dimensional architecture of the cell-matrix composite.A comprehensive review of the scope and impact of tissue engineering has previously appeared. Tissue-engineered devices have the potential to reduce the annual health-care cost related to tissue loss and end-stage organ failure to the order of $400 billion, eight million invasive surgical procedures, and 65 million hospital days. A common approach to engineer a functional tissue is to place cells derived from a healthy organ or tissue type (identical or similar to the dysfunctional tissue/organ) on or within matrices analogous to host-tissue ECM. These systems can then be enclosed in appropriate membranes that isolate cells from immune rejection following implantation or can be transplanted directly with the administration of drugs that prevent the immune rejection. Another application of these systems is for extracorporeal (outside the patient's body) device support of a dysfunctional organ. In either instance, the success of the engineered tissue depends critically on the interactions of cells with the tissue analogues. The objective of this article is to outline the simplest matrix-design parameters to control these interactions. While organs are comprised of very different tissue types, for the sake of simplicity, this article is primarily pertinent to the tissue engineering of one major organ, the liver. The choice of this tissue type is intended to serve as a comprehensive generalization of many different cell types since in the diversity and complexity of its activities, the liver has few parallels. The development of an artificial liver is also critically awaited, as in the United States alone, 35,000 people, including the many wait listed for the exorbitant liver organ transplants ($300,000), die each year of chronic liver disorders. In many other countries, liver disease is the second leading cause of death.


Lab on a Chip ◽  
2015 ◽  
Vol 15 (3) ◽  
pp. 920-930 ◽  
Author(s):  
H. K. Chu ◽  
Z. Huan ◽  
J. K. Mills ◽  
J. Yang ◽  
D. Sun

A multi-layer scaffold incorporating dielectrophoresis for automated cell manipulation is developed to construct 3D cellular patterns for tissue engineering applications.


Sign in / Sign up

Export Citation Format

Share Document