scholarly journals Removal Of Copper From Aqueous Solutions By Using Natural And Fe-Modified Clinoptilolite

Author(s):  
Marek Lipovský ◽  
Maroš Sirotiak ◽  
Maroš Soldán

Abstract Removal of copper from aqueous solution on the natural and modified clinoptilolite was studied under static conditions. Batch adsorptions of copper were performed to investigate the effects of contact time and initial metal ion concentration. The Freundlich and Langmuir adsorption isotherms were used to analyse the experimental data. The kinetic analyses of the adsorption processes were performed using the pseudo-first-order and pseudo-second-order kinetic models.

2020 ◽  
Vol 24 (2) ◽  
pp. 329-333
Author(s):  
D.O. Jalija ◽  
A . Uzairu

The objective of this study was to investigate the biosorption of Cu (II) and Ni (II) ions from aqueous solution by calcium alginate beads. The effects of solution pH, contact time and initial metal ion concentration were evaluated. The results showed that maximum Cu (II) removal (93.10%) occurred at pH of 9.0, contact time of 120 minutes and initial ion concentration of 10 mg/L while that of Ni (II) was 94.6%, which was achieved at pH of 8.0, contact time of 120 minutes and initial ion concentration of 10 mg/L. The equilibrium data fitted well to the Langmuir Isotherm indicating that the process is a monolayer adsorption. The coefficients of determination, R2, values for the Langmuir Isotherm were 0.9799 and 0.9822 respectively for Cu (II) and Ni (II) ions. The values of the maximum biosorption capacity, Qo, were 10.79 and 6.25 mgg-1 respectively. The kinetic data also revealed that the sorption process could best be described by the pseudo – second order kinetic model. The R2 values for the pseudo – second order kinetic plots for Cu (II) and Ni (II) were 0.9988 and 0.9969 respectively. These values were higher than those for the pseudo – first order plots. The values of the biosorption capacity qe obtained from the pseudo – second order plots were very close to the experimental values of qe indicating that the biosorption process follows the second order kinetics. This study has therefore shown that calcium alginate beads can be used for the removal of Cu (II) and Ni (II) ions from wastewaters. Keywords: Keywords: Adsorption, Calcium alginate, Isotherm, Langmuir, Pseudo- first order, Pseudo-second order


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Nacer Ferrah ◽  
Omar Abderrahim ◽  
Mohamed Amine Didi ◽  
Didier Villemin

A new chelating polymeric sorbent has been developed using polystyrene resin grafted with phosphonic acid. After characterization by FTIR and elementary analysis, the new resin has been investigated in liquid-solid extraction of cadmium(II). The results indicated that phosphonic resin could adsorb Cd(II) ion effectively from aqueous solution. The adsorption was strongly dependent on the pH of the medium and the optimum pH value level for better sorption was between 3.2 and 5.2. The influence of other analytical parameters including contact time, amount of resin, metal ion concentration, and the presence of some electrolytes was investigated. The maximum uptake capacity of Cd(II) ions was 37,9 mg·g−1grafted resin at ambient temperature, at an initial pH value of 5.0. The overall adsorption process was best described by pseudo second-order kinetic. When Freundlich and Langmuir isotherms were tested, the latter had a better fit with the experimental data. Furthermore, more than 92% of Cd(II) could be eluted by using 1.0 mol·L−1HCl in one cycle.


2016 ◽  
Vol 74 (7) ◽  
pp. 1644-1657 ◽  
Author(s):  
Mona El-Sayed ◽  
Gh. Eshaq ◽  
A. E. ElMetwally

In our study, Mg–Al–Zn mingled oxides were prepared by the co-precipitation method. The structure, composition, morphology and thermal stability of the synthesized Mg–Al–Zn mingled oxides were analyzed by powder X-ray diffraction, Fourier transform infrared spectrometry, N2 physisorption, scanning electron microscopy, differential scanning calorimetry and thermogravimetry. Batch experiments were performed to study the adsorption behavior of cobalt(II) and nickel(II) as a function of pH, contact time, initial metal ion concentration, and adsorbent dose. The maximum adsorption capacity of Mg–Al–Zn mingled oxides for cobalt and nickel metal ions was 116.7 mg g−1, and 70.4 mg g−1, respectively. The experimental data were analyzed using pseudo-first- and pseudo-second-order kinetic models in linear and nonlinear regression analysis. The kinetic studies showed that the adsorption process could be described by the pseudo-second-order kinetic model. Experimental equilibrium data were well represented by Langmuir and Freundlich isotherm models. Also, the maximum monolayer capacity, qmax, obtained was 113.8 mg g−1, and 79.4 mg g−1 for Co(II), and Ni(II), respectively. Our results showed that Mg–Al–Zn mingled oxides can be used as an efficient adsorbent material for removal of heavy metals from industrial wastewater samples.


2021 ◽  
Author(s):  
Muhammad Yasir ◽  
Tomáš Šopík ◽  
Rahul Patwa ◽  
Dušan Kimmer ◽  
Vladimír Sedlařík

Abstract This study emphasizes rapid and simultaneous adsorptive removal of estrogenic hormones (EHs): estrone (E1), 17β-estradiol (E2), 17α-ethinylestradiol (EE2), and estriol (E3) from wastewater using recycled waste cigarette electrospun nanofibers (WCENFs). The nanofibers exhibited a small diameter (196±65 nm) and large surface area (18.05 m 2 /g), along with a strong affinity towards all EHs by adsorption due to abundant hydrogen bonding interactions. A one-step high-performance liquid chromatography technique was developed to detect each EH present in the solution simultaneously. The adsorption kinetics helps select optimum conditions for the large-scale removal process, so experimental data using pseudo-first-order, pseudo-second-order, intra-particle diffusion, Elovich, and fractional power models were fitted. It was found that E1, E2, and EE2 followed pseudo-second-order kinetics while E3 followed pseudo-first-order kinetic models. The total adsorption capacity on WCENFs was determined to be 2.14 mg/g, whereas the individual adsorption capacities of E1, E2, EE2, and E3 were found to be 0.551, 0.532, 0.687, and 0.369 mg/g, respectively. The percentage efficiency of WCENFs was highest with EE2 ~64.3% and least with E3 ~34.6%. Adsorption-desorption studies revealed that WCENFs could repeatedly be used four times. The reported results indicate a significant potential of WCENFs to be an effective sorbent and portable filter for simultaneous estrogenic hormone removal. WCENFs filter is a suitable alternative to commercial Cellulose acetate filters.


2019 ◽  
Author(s):  
Chem Int

An easy route for preparation emulsion of kaolinite (Al2Si2O5.4H2O) from Sweileh sand deposits, west Amman, Jordan by hydrochloric acid under continuous stirring for 4 h at room temperature was performed and nano kaolinite powder was used as an adsorbent for the removal of Cu(II), Zn(II) and Ni(II) ions. Nano kaolinite was characterized by XRD, FT-IR and SEM techniques. Effect of pH, adsorbent dose, initial metal ion concentration, contact time and temperature on adsorption process was examined. The negative values of ΔGo and the positive value of ΔHo revealed that the adsorption process was spontaneous and endothermic. The Langmuir isotherm model fitted well to metal ions adsorption data and the adsorption capacity. The kinetic data provided the best correlation of the adsorption with pseudo-second order kinetic model. In view of promising efficiency, the nano kaolinite can be employed for heavy metal ions adsorption.


2018 ◽  
Vol 5 (8) ◽  
pp. 171667 ◽  
Author(s):  
Xiong Liu ◽  
Longqi Xu ◽  
Yaqing Liu ◽  
Wenqi Zhou

Types of resins anchored on citric acid were synthesized and identified. The citric acid-modified resins PS-CA, PS-O-CA and PS-N-CA were synthesized by anchoring citric acid on PS-Cl, PS-OH and PS-NH 2 , respectively. The PS-CA, PS-O-CA and PS-N-CA were used to adsorb Fe 3+ , Al 3+ , Cu 2+ , Pb 2+ , Cd 2+ and Hg 2+ . The influences of pH, adsorption time and metal ion concentration on the adsorption capacities of the resins were investigated. After optimization, PS-CA was a good adsorbent to Fe 3+ , Cu 2+ , Pb 2+ and Cd 2+ with q m values of 143.9 mg g −1 , 77.4 mg g −1 , 18.9 mg g −1 and 119.9 mg g −1 , respectively. PS-N-CA was a good adsorbent to Al 3+ and Hg 2+ with q m values of 176.6 mg g −1 and 114.9 mg g −1 , respectively. The adsorption kinetics and adsorption isotherm experiments indicated that the pseudo-first-order rate equation was more appropriate for characterizing the kinetic data and the Langmuir model was more suitable for fitting the equilibrium data. The reusability of the citric acid-modified resins was also evaluated and these resins exhibited considerable reusability.


2018 ◽  
Vol 2 (3) ◽  
pp. 35 ◽  
Author(s):  
Edidiong Asuquo ◽  
Alastair Martin ◽  
Petrus Nzerem

An agricultural residue, white yam (Dioscorea rotundata) tuber peel (YTBS), was used for the removal of Cd(II) ion from an aqueous solution using a batch method. The adsorbent was characterized using FTIR, TGA, SEM, EDX, N2 BET, XRD, and XRF. The optimization of sorption variables such as pH, contact time, adsorbent dose, and initial metal ion concentration at 25 °C were also carried out. The results indicated the dependence of sorption on the adsorbate pH and adsorbent dose, while the adsorption system reached equilibrium in 180 min. The sorption kinetics was fitted to three models (pseudo first order, pseudo second order, and Elovich) to validate the kinetics, and the pseudo first order was the best model for the description of Cd(II) uptake. Equilibrium isotherm modelling was also carried out using the Langmuir, Freundlich, and Temkin models, with the Langmuir isotherm giving the best fitting to the experimental results. The maximum loading capacity (qmax) of the adsorbent for Cd(II) obtained from the Langmuir isotherm model was 22.4 mg∙g−1 with an isotherm constant (KL) of 3.46 × 10−3 L·mg−1 and r2 value of 0.99. This result indicates that the YTBS residue was a good adsorbent for the removal of Cd(II) ion from aqueous system.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Muhammad Hamid Raza ◽  
Aqsa Sadiq ◽  
Umar Farooq ◽  
Makshoof Athar ◽  
Tajamal Hussain ◽  
...  

Batch scale studies for the adsorption potential of novel biosorbentPhragmites karka(Trin), in its natural and treated forms, were performed for removal of mercury ions from aqueous solution. The study was carried out at different parameters to obtain optimum conditions of pH, biosorbent dose, agitation speed, time of contact, temperature, and initial metal ion concentration. To analyze the suitability of the process and maximum amount of metal uptake, Dubinin-Radushkevich (D-R) model, Freundlich isotherm, and Langmuir isotherm were applied. The values ofqmaxfor natural and treated biosorbents were found at 1.79 and 2.27 mg/g, respectively. The optimum values of contact time and agitation speed were found at 50 min and 150 rpm for natural biosorbent whereas 40 min and 100 rpm for treated biosorbent, respectively. The optimum biosorption capacities were observed at pH 4 and temperature 313 K for both naturalP. karkaand treatedP. karka.RLvalues indicate that comparatively treatedP. karkawas more feasible for mercury adsorption compared to naturalP. karka. Both pseudo-first-order and pseudo-second-order kinetic models were applied and it was found that data fit best to the pseudo-second-order kinetic model. Thermodynamic studies indicate that adsorption process was spontaneous, feasible, and endothermic.


2017 ◽  
Vol 19 (3) ◽  
pp. 120-129 ◽  
Author(s):  
Wojciech Konicki ◽  
Małgorzata Aleksandrzak ◽  
Ewa Mijowska

Abstract In this study, the adsorption of Ni2+ and Fe3+ metal ions from aqueous solutions onto graphene oxide (GO) have been explored. The effects of various experimental factors such as pH of the solution, initial metal ion concentration and temperature were evaluated. The kinetic, equilibrium and thermodynamic studies were also investigated. The adsorption rate data were analyzed using the pseudo-first-order kinetic model, the pseudo-second-order kinetic model and the intraparticle diffusion model. Kinetic studies indicate that the adsorption of both ions follows the pseudo-second-order kinetics. The isotherms of adsorption data were analyzed by adsorption isotherm models such as Langmuir and Freundlich. Equilibrium data fitted well with the Langmuir model. The maximum adsorption capacities of Ni2+ and Fe3+ onto GO were 35.6 and 27.3 mg g−1, respectively. In addition, various thermodynamic parameters, such as enthalpy (ΔHO), entropy (ΔSO) and Gibbs free energy (ΔGO), were calculated.


Author(s):  
E. S. Isagba ◽  
S. Kadiri ◽  
I. R. Ilaboya

This paper investigated the use of yam peel as a natural adsorbent for the removal of Copper (Cu) and Manganese (Mn) from waste water. The yam peels were thoroughly washed with distilled water, dried, pulverized and carbonized. The carbonized yam peel was then characterized for its particle sizes, moisture content, ash content, volatile matter, Methylene Blue number, Iodine number. The raw yam peels were prepared using the same procedure, but was not carbonized. The adsorption of Mn(II) and Cu(II) ions were investigated using adsorption experiment at room temperature. The effect of contact time, metal ion concentration and dosage were evaluated. The residual concentrations of the metal ions were determined by Atomic Absorption Spectrophotometer (AAS). Experimental data obtained were analyzed using Kinetic models and Isotherms such as Pseudo- First order kinetic models, Pseudo-second order kinetic models, Langmuir isotherms and Freundlich isotherm. The analysis showed that the pseudo-second order kinetic model best described the adsorption of the metal ions; ( Cu; r2 = 0.991 for RYP and r2 = 0.834 for AYP) and (Mn; r2 = 0.958 for RYP and r2 = 0.896 for AYP) and the experimental data best fit the Freundlich model; (Cu; r2 = 0.564 for RYP and r2 = 0.871 for AYP) and (Mn; r2 = 0.685 for RYP and r2 = 0.736 for AYP). Finally, optimum removal efficiencies of 30.54% for Mn(II) and 39.62% for Cu(II) were obtained for AYP at concentrations of 50mg/l and mass dosage of 1.0g, 120 minutes contact time and a pH of 6.8.


Sign in / Sign up

Export Citation Format

Share Document