scholarly journals Microstructure and compressive behavior of lamellar Al2O3p/Al composite prepared by freeze-drying and mechanical-pressure infiltration method

2020 ◽  
Vol 27 (1) ◽  
pp. 1-9 ◽  
Author(s):  
Qiang Zhang ◽  
Shanliang Dong ◽  
Shuai Ma ◽  
Xuwei Hou ◽  
Wenshu Yang ◽  
...  

AbstractInfiltrated molten Al matrix by mechanical-pressure infiltration method into the ceramic scaffold prepared by freeze-drying technology could prepare dense lamellar Al matrix composites without damage of the biomimetic microstructure of the scaffold. However, the investigation of lamellar Al matrix composites prepared by freeze-drying and mechanical-pressure infiltration method has not been fully understood yet. In the present work, the Al2O3 scaffold with pearl layer structure was prepared by freezing-dry method, and eventually the lamellar Al2O3p/Al composite was fabricated by mechanical-pressure infiltration method. The Al matrix was infiltrated well into the large pores of the Al2O3 scaffold, and the lamellar structure of the Al2O3 was well preserved. The hardness of the lamellar Al2O3p/Al composite was isotropic in transvers and perpendicular directions. However, the compressive strengths of the lamellar Al2O3p/Al composite were significant anisotropic while the compressive strength in transvers direction was 127.7% higher than that in the perpendicular direction, indicating the integrality of the lamellae microstructure (especially the bridging layers). Due to the mismatched deformability, weak debonding was observed between Al and Al2O3p/Al layers in the fracture surface of the lamellar Al2O3p/Al composite. It indicates that the interfacial bonding between Al and Al2O3p/Al layers is rather strong, which is beneficial for higher strength in transvers direction but lead to lower strength in perpendicular direction.

2017 ◽  
Vol 898 ◽  
pp. 992-999
Author(s):  
Jiao Yan Liang ◽  
Xue Wei Hou

Si particles reinforced Al matrix composites (Sip/Al) have been widely used in the electronic packaging filed, and the higher mechanical and themo-physical properties are required for their application. In the present work, the effect of Si content (from 0.28 to 6.95 wt. %) in the matrix alloy on the microstructure, mechanical and thermo-physical properties of Sip/Al-Si-Mg composites have been investigated. Sip/Al-Si-Mg composites with 55 vol. % Si particles were prepared by pressure infiltration method. It has been found that the increment of Si content led to the improvement of relative density of composites. Moreover, the bending strength and thermal conductivity of Sip/Al-Si-Mg composites reached its maximum at Si content of 1.98 wt.%, which were 238.8MPa and 159.5W/(m∙K), respectively. Furthermore, the coefficient of thermal expansion (CTE) of Sip/Al-Si-Mg composites decreased with the increase of Si content. The mechanism of Si content on the microstructure of performance of Sip/Al-Si-Mg composites has been discussed.


2019 ◽  
Vol 9 (7) ◽  
pp. 801-807
Author(s):  
Myung Eun Suk

In this study, the mechanical properties of light nanoporous Carbon nanotubes (CNT)-Aluminum (Al) composites were investigated using atomistic tensile simulations. High volume fractions of large size CNT were embedded in Al matrix composites to reduce the weight of Al by 23%. The lightweight CNT-Al composite exhibited enhanced mechanical properties, including 105.8, 246.9 and 243.7% improvement for tensile strength, fracture toughness, and elastic modulus, respectively. The decomposition of total stress into its CNT and Al matrix components indicated enhanced elastic properties were due to the shear interaction between CNT and Al in addition to the great load bearing capacity of CNT. By performing dislocation density analysis, it was discovered that the large dislocation storage capability of nanoporous CNT-Al enhanced ductility when compared to pure Al. This study demonstrates the high potential of nanoporous CNT-Al as a lightweight and strong, yet tough material, and it also provides atomic scale understanding of the mechanical behavior of CNT-Al nanocomposite.


2012 ◽  
Vol 706-709 ◽  
pp. 1967-1972 ◽  
Author(s):  
Kiyoshi Mizuuchi ◽  
Kanryu Inoue ◽  
Yasuyuki Agari ◽  
Yoshiaki Morisada ◽  
Masami Sugioka ◽  
...  

Diamond-particle-dispersed-aluminum (Al) matrix composites were fabricated in continuous solid-liquid co-existent state by spark plasma sintering (SPS) process from the mixture of diamond powders, pure Al powders and Al-5mass%Si alloy powders. The microstructures and thermal conductivities of the composites fabricated were examined. These composites were well consolidated by heating at a temperature range between 798K and 876K for 1.56ks during SPS process. No reaction at the interface between the diamond particle and the Al matrix was observed by scanning electron microscopy for the composites fabricated under the sintering conditions employed in the present study. The relative packing density of the diamond-Al composite fabricated was 99% or higher in a volume fraction range of diamond between 45% and 50%. Thermal conductivity of the diamond-Al composite containing 50 vol.% diamond reached 552W/mK, approximately 95% the theoretical thermal conductivity estimated using Maxwell-Eucken’s equation.


Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3163
Author(s):  
Fengguo Liu ◽  
Ning Su ◽  
Renguo Guan

Multilayer reduced graphene oxide (mrGO) was chemically modified by electroless plating of copper on surface to form mrGO-Cu. The scanning electron microscope (SEM) and transmission electron microscope (TEM) analysis revealed that nano-Cu particles were uniformly dispersed on the surface of mrGO. The mrGO-Cu powders were further utilized as reinforcements for aluminum (Al) matrix and the mrGO-Cu/Al composite was successfully fabricated through clad rolling of milled powder. The tribological properties of the mrGO-Cu/Al composites were explored. The tribological results show that the mrGO-Cu could reduce the friction coefficient and wear loss of mrGO-Cu/Al composites, since the mrGO-Cu participated in lubricating processes due to the formation of a transfer layer on the contact surface. Furthermore, it is found that the composition of mrGO-Cu could significantly influence the tribological properties of the mrGO-Cu/Al composites. The composites with 4% of mrGO-Cu for composites exhibited the best tribological behavior, which transformed from adhesive wear to abrasive wear, due to the formation of a graphite lubricating film.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3114
Author(s):  
Bartosz Hekner ◽  
Jerzy Myalski ◽  
Patryk Wrześniowski ◽  
Tomasz Maciąg

In this paper, the applicability of aluminium matrix composites to high-temperature working conditions (not exceeding the Al melting point) was evaluated. The behaviour of Al-Ti-C composites at elevated temperatures was described based on microstructural and phase composition observations for composites heated at temperatures of 540 and 600 °C over differing time intervals from 2 to 72 h. The materials investigated were aluminium matrix composites (AMC) reinforced with a spatial carbon (C) structure covered by a titanium (Ti) layer. This layer protected the carbon surface against contact with the aluminium during processing, protection which was maintained for the material’s lifetime and ensured the required phase compositions of Al4C3 phase limitation and AlTi3 phase creation. It was also proved that heat treatment influenced not only phase compositions but also the microstructure of the material, and, as a consequence, the properties of the composite.


Sign in / Sign up

Export Citation Format

Share Document