scholarly journals Finite element model of laminate construction element with multi-phase microstructure

2020 ◽  
Vol 27 (1) ◽  
pp. 405-414
Author(s):  
Jerzy Marszałek ◽  
Jacek Stadnicki ◽  
Piotr Danielczyk

AbstractThe article describes a method of creating a mesoscale finite element model of a fabric reinforced laminate that replicates the smallest repetitive fragment of its microstructure – RUC (Repetitive Unit Cell). The model takes into account the influence of the number and orientation of layers, the weave of the reinforcement fabric as well as manufacturing technology on the strength and stiffness of the laminate. The constants of the finite elements forming RUC (equivalent cross-sectional parameters, limit values of forces ensuring layer integrity) are determined experimentally by performing uncomplicated tests of specimens of a particular laminate. A special preprocessor was developed to generate the finite element model of the construction element from laminate, which automatically creates the so-called batch file defining the model. The usefulness of the preprocessor was checked by simulating a three-point bending test of a laminate door beam of a passenger car. The obtained calculation results were verified experimentally.

2021 ◽  
Vol 18 ◽  
pp. 175682932110433
Author(s):  
Shanyong Zhao ◽  
Zhen Liu ◽  
Ke Lu ◽  
Dacheng Su ◽  
Shangjing Wu

In this paper, the bionic membrane structure is introduced to improve the aerodynamic performance of nano rotor at the low Reynolds number. The aerodynamic characteristics of nano rotor made of hyperelastic material as membrane blades are studied. Firstly, based on the hyperelastic constitutive model, a finite element model of the rotor is established and compared with the results of the modal test to verify the accuracy of the model. Then the computational fluid dynamics model of membrane nano rotor is established which combined with the finite element model. The aerodynamic characteristics of the membrane rotor under hovering conditions are studied using fluid–structure interaction method. It is found that the calculation results matched well with the experiment results. The design of the structural parameters such as the membrane proportion, shape, and position of the membrane rotor is optimized. The influence of each parameter on the aerodynamic performance of the rotor is obtained. Under certain structural conditions, the performance can be effectively improved, which provides a new idea for the design of the nano rotor.


2018 ◽  
Vol 22 (3) ◽  
pp. 613-625 ◽  
Author(s):  
M Anbarasu ◽  
M Venkatesan

This work reports numerical results concerning the cold-formed steel built-up I-section columns composed of four U-profiles under axial compression. A finite element model is developed by using the software program ABAQUS. The developed model includes geometric, material nonlinearities and geometric imperfections. The finite element model was verified against the experimental results reported in the cold-formed steel built-up open section columns. In the parametric study, the sections are analysed with several cross-sectional dimension ratios and lengths, in order to assess their influence on the buckling behaviour and ultimate strength of cold-formed steel built-up I-section columns. After presenting and discussing the numerical parametric results, the article shows that the current direct strength method in the North American Specification for cold-formed steel compression members design curve fails to predict adequately the ultimate strength of some of the columns analysed and addresses the modification proposed on current direct strength method curves, providing improved predictions of all the numerical ultimate strength available. The proposed method is also assessed by reliability analysis.


2013 ◽  
Vol 21 (5) ◽  
pp. 493-500 ◽  
Author(s):  
Matthias Lerch ◽  
Nelly Weigel ◽  
Henning Windhagen ◽  
Max Ettinger ◽  
Fritz Thorey ◽  
...  

2014 ◽  
Vol 1078 ◽  
pp. 266-270
Author(s):  
Yu Feng Shu ◽  
Yong Feng Zheng

This paper establishes the finite element model of reachstacker spreader, makes static strength calculation under eight typical operating conditions with rated load, based on the calculation results, it points out the weaknesses of spreader and gives some corresponding improvement measures for the drawbacks. Further analysis shows that the maximum stress of improved spreader mechanism has reduced 10.1%, which demonstrates the effectiveness of improvements.


2011 ◽  
Vol 94-96 ◽  
pp. 2080-2083
Author(s):  
Zhi Jian Li ◽  
Jian Kun Zhang

The finite element model of metal structure of 45 tons container stacker is established and Ansys software is employed to calculate the stress of key parts. The skill of model processing of the complete machine and the boundary condition of calculation model is described. The calculation results are used to guide the design of the container stacker.


Author(s):  
Nguyen Ngoc Tan ◽  
Nguyen Trung Kien

The reinforcement corrosion is one of the most dominant deterioration mechanisms of existing reinforced concrete structures. In this paper, the effects of the stirrup corrosion on the structural performance of five corroded beams have been simulated using the finite element model with DIANA software. These tested beams are divided into two groups for considering different inputs: (i) without corroded stirrups in flexural span, (ii) with locally corroded stirrups at different locations (e.g. full span, shear span, middle span). FE model has been calibrated with experimental results that were obtained from the four-point bending test carried out on the tested beams. This study shows that the stirrups corrosion should be received more attention in the serviceability limit state since its considerable effect on flexural behavior. Based on a parametric study, it shows that the effect of the cross-section loss of tension reinforcements on the load-carrying capacity of the corroded beam is more significant than the bond strength reduction. Keywords: reinforced concrete; beam; stirrup corrosion; finite element model; flexural nonlinear behavior.


Author(s):  
Jun Shi ◽  
Jianfeng Shi ◽  
Hanxin Chen ◽  
Yibin He ◽  
Qingjun Wang ◽  
...  

Polyethylene pipe reinforced by winding steel wires (PSP) is new type of polymer-matrix composite pipe, which is widely used in petroleum, chemical engineering, and water supply, etc. PSP is composed of a thermoplastic core pipe (HDPE), an outer cover layer (HDPE), and steel wire skeleton sandwiched in the middle. The steel wire skeleton is formed by crossly winding steel wires integrated with HDPE matrix by cohesive resin. In traditional analysis models of PSP, components of PSP were considered linear elastic, and steel wire skeleton was assumed to be orthotropic composite layer based on the classical laminated plate theory. Although achieving good results in engineering applications, traditional models neglected the material nonlinearity of steel wires and HDPE matrix, which was significant to failure analysis. In the present paper, a new finite element model was constructed using commercial software ABAQUS[1], based on the actual steel wire spiral structure of PSP. Steel wires and HDPE matrix were modeled separately, which were both represented by solid elements, and the interaction between steel wires and HDPE was characterized by tie interaction. Experimental result of short-term burst pressure of PSP was used to validate the nonlinear model. Compared with the experimental result, the calculation results of the nonlinear model agreed well. Furthermore, the effect of the nonlinear material property of components on the calculation results were investigated, and the short-term mechanical responses of PSP were determined and analyzed through the nonlinear model.


Author(s):  
Tianjiao Liu ◽  
Yongjun Wang ◽  
Jianjun Wu ◽  
Xiaojiao Xia ◽  
Junbiao Wang ◽  
...  

In this investigation, the attention is focused on the minimum bending radii of 2196-T8511 and 2099-T83 Al-Li alloy extrusions. To predict the failure of Al-Li alloys, sheet and extrusion stretch bending tests are developed, carried out and simulated using finite element model. The theoretical minimum bending radius is introduced to derive a safe lower limit for the bending radius which can serve as a guideline for tool and product design. Stretch bending tests of Al-Li alloys are performed using the three-point bending test and displacement-controlled stretch bending test at room temperature. The finite element model incorporates three-dimensional solid elements and ductile damage modeling. The experimental results show that Al-Li alloy extrusions in stretch bending show three types of failures, occurring at the unbent region near the entrance of the jaws, at the region below the exit of the die and within the region in contact with the die, respectively. Comparison between predicted values and experimental results has been made, a consistent agreement being achieved, reflecting the reliability of the present model. The three types of failure mechanisms which compete with each other are tensile localization failure, die-corner failure and shear failure, respectively. Based on the analytical models, experiments and simulations, it appears that the three distinct failures need to be applied to predict the minimum bending radius and range of failures that can occur with 2196-T8511 and 2099-T83 Al-Li alloy extrusions in stretch bending.


2013 ◽  
Vol 433-435 ◽  
pp. 2239-2245
Author(s):  
Ya Hui Li ◽  
Wei Dong Luo ◽  
Rui Zhou

Using CATIA set up a 3d model of urban bus frame in this paper, And ANSYS13.0 is used to establish the body frame finite element model of the certain urban bus body frame, Based on this model, the static characteristics under various conditions were analyzed, and the features of stress and strain distribution are gotten. Through the analysis of calculation results, we can conclude that this body frame around the column to the rear windscreen beam junction strength in insufficient, need to increase cross-sectional area of the left column; The floor behind driver seats strength is not enough, need to add two beams to strengthen the support. And the calculation result shows that the rest of the frame has a certain extent optimization space, and can provide the basis for the next step of lightweight.


Sign in / Sign up

Export Citation Format

Share Document