scholarly journals The occurrence of hot weather in the Lublin-Felin and Czesławice in relation to atmospheric circulation (1966–2010)

Author(s):  
Krzysztof Bartoszek ◽  
Alicja Węgrzyn

Abstract The occurrence of hot weather in the Lublin-Felin and Czesławice in relation to atmospheric circulation (1966−2010). The paper describes the occurrence of hot (tmax 25.1−30.0°C) and very hot days (tmax >30°C) in Lublin-Felin and Czesławice in the years 1966−2010. The analysis covers the long-term variability of such days, and duration of heat waves. Their circulation conditions were also determined, with indication of circulation types during which the probability of occurrence of hot and very hot days was the highest. In the study area, hot days occurred from April to September, and very hot days from May to August, with the highest frequency in July in both cases. In the period from 1991 to 2010, a considerably higher number of cases of very hot days were recorded than in the 1970s and 1980s. Moreover, they occurred in increasingly long sequences, contributing to more frequent occurrence of unfavourable thermal and humid conditions during the growing season of plants. The highest probability of occurrence of hot and very hot days was determined for circulation types with airflow from the southern sector, and the lowest from the northern sector. Should the upward trend in the frequency of very hot days continue, the risk of the effect of such unfavourable thermal conditions on the health and well-being of tourists and patients of the health resort in Nałęczów will also increase

2021 ◽  
Vol 10.47389/36 (36.4) ◽  
pp. 55-61
Author(s):  
Danielle Every ◽  
Jim McLennan ◽  
Elizabeth Osborn ◽  
Chris Cook

Historically, heat waves have resulted in more Australian deaths than any other natural hazard and continue to present challenges to the health and emergency management sectors. While people experiencing homelessness are particularly vulnerable to adverse effects of heat waves, little research has been reported about their hot weather experiences. This paper reports findings from interviews with 48 homeless people sleeping rough in Adelaide CBD on very hot days. While the majority reported drinking a litre or more of water in the previous 24 hours, 79% reported experiencing one or more heat stress symptoms. The research highlights that the protective actions people sleeping rough can take during hot weather are limited by their circumstances and may not be sufficient to prevent dehydration and heat stress. The levels of dehydration and heat stress symptoms suggest that immediate responses could include making drinking water more readily available. It may be helpful to provide information which highlights heat stress symptoms including indicators of dehydration. The role of outreach in providing connections, support and advice is most likely to ameliorate the risk of heat stress. However, the long-term response to protect people from heat stress is access to housing.


2021 ◽  
Author(s):  
Natalia Korhonen ◽  
Otto Hyvärinen ◽  
Matti Kämäräinen ◽  
Kirsti Jylhä

<p>Severe heatwaves have harmful impacts on ecosystems and society. Early warning of heat waves help with decreasing their harmful impact. Previous research shows that the Extended Range Forecasts (ERF) of the European Centre for Medium-Range Weather Forecasts (ECMWF) have over Europe a somewhat higher reforecast skill for extreme hot summer temperatures than for long-term mean temperatures. Also it has been shown that the reforecast skill of the ERFs of the ECMWF was strongly increased by the most severe heat waves (the European heatwave 2003 and the Russian heatwave 2010).</p><p>Our aim is to be able to estimate the skill of a heat wave forecast at the time the forecast is given. For that we investigated the spatial and temporal reforecast skill of the ERFs of the ECMWF to forecast hot days (here defined as a day on which the 5 days running mean surface temperature is above its summer 90<sup>th</sup> percentile) in the continental Europe in summers 2000-2019. We used the ECMWF 2-meter temperature reforecasts and verified them against the ERA5 reanalysis. The skill of the hot day reforecasts was estimated by the symmetric extremal dependence index (SEDI) which considers both hit rates and false alarm rates of the hot day forecasts. Further, we investigated the skill of the heatwave reforecasts based on at which time steps of the forecast the hot days were forecasted. We found that on the mesoscale (horizontal scale of ~500 km) the ERFs of the ECMWF were most skillful in predicting the life cycle of a heat wave (lasting up to 25 days) about a week before its start and during its course. That is, on the mesoscale those reforecasts, in which hot day(s) were forecasted to occur during the first 7…11 days, were more skillful on lead times up to 25 days than the rest of the heat wave forecasts. This finding is valuable information, e.g., in the energy and health sectors while preparing for a coming heat wave.</p><p>The work presented here is part of the research project HEATCLIM (Heat and health in the changing climate) funded by the Academy of Finland.</p>


2008 ◽  
Vol 14 ◽  
pp. 243-249 ◽  
Author(s):  
J. Kyselý ◽  
R. Huth

Abstract. Heat waves are among natural hazards with the most severe consequences for human society, including pronounced mortality impacts in mid-latitudes. Recent studies have hypothesized that the enhanced persistence of atmospheric circulation may affect surface climatic extremes, mainly the frequency and severity of heat waves. In this paper we examine relationships between the persistence of the Hess-Brezowsky circulation types conducive to summer heat waves and air temperature anomalies at stations over most of the European continent. We also evaluate differences between temperature anomalies during late and early stages of warm circulation types in all seasons. Results show that more persistent circulation patterns tend to enhance the severity of heat waves and support more pronounced temperature anomalies. Recent sharply rising trends in positive temperature extremes over Europe may be related to the greater persistence of the circulation types, and if similar changes towards enhanced persistence affect other mid-latitudinal regions, analogous consequences and implications for temperature extremes may be expected.


2016 ◽  
Vol 11 (1) ◽  
pp. 5-15 ◽  
Author(s):  
Ewa Łupikasza ◽  
Tadeusz Niedźwiedź

Abstract This paper investigates fog frequency in southern Poland in relation to various topography (concave and convex forms) and atmospheric circulation types. It also discusses long-term variability in the annual and seasonal number of days with fog. Daily information on fog occurrence was taken from three high quality synoptic stations representing various landforms: Kraków-Balice (bottom of the hollow), Katowice-Muchowiec (Silesian Upland) and Bielsko-Aleksandrowice (summit of Carpathian Foothill). In the central part of southern Poland during the last 50 years (1966-2015) fog occurred on average during 53-67 days a year. The annual number of foggy days in Kraków (67 days) located in a structural basin was by 14-15 days higher than in Bielsko (53 days) situated in the Silesian Foothills. In the annual course, high fog occurrence (above 6 days per month) was observed from September to January, with the maximum in Kraków (10 days in October). At every station the monthly minimum of fog occurrence fell in July (2 days). In summer and spring the highest probability of fog occurrence was found on days with anticyclonic types and air advection from the northeastern (Na, NEa) and eastern (Ea, SEa) sectors. In autumn, a high probability was also found for the anticyclonic types with advection of air mass from the eastern and southern sectors. In the Carpathian Foothills (Bielsko) the probability of fog occurrence in winter was significantly enhanced only for the cyclonic types with air advection from the eastern sector (NEc, Ec, SEc) and nonadvective types Cc (cyclone centre) and Bc (cyclonic trough). Trends in the fog frequency were mostly insignificant. The only significant decreasing trend was found in Kraków on the annual scale and in summer when fog frequency was low.


2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Eva Plavcová ◽  
Jan Kyselý

We study summer heat waves and winter cold spells and their links to atmospheric circulation in an ensemble of EURO-CORDEX RCMs in Central Europe. Results of 19 simulations were compared against observations over 1980–2005. Atmospheric circulation was represented by circulation types and supertypes derived from daily gridded mean sea level pressure. We examined observed and simulated characteristics of hot and cold days (defined using percentiles of temperature anomalies from the mean annual cycle) and heat waves and cold spells (periods of at least three hot/cold days in summer/winter). Although the ensemble of RCMs reproduces on average the frequency and the mean length of heat waves and cold spells relatively well, individual simulations suffer from biases. Most model runs have an enhanced tendency to group hot/cold days into sequences, with several simulations leading to extremely long heat waves or cold spells (the maximum length overestimated by up to 2-3 times). All simulations also produce an extreme winter season with (often considerably) higher number of cold days than in any observed winter. The RCMs reproduce in general the observed circulation significantly conducive to heat waves and cold spells. Zonal flow reduces the probability of temperature extremes in both seasons, while advection of warm/cold air from the south-easterly/north-easterly quadrant plays a dominant role in developing heat waves/cold spells. Because of these links, the simulation of temperature extremes in RCMs is strongly affected by biases in atmospheric circulation. For almost all simulations and all circulation supertypes, the persistence of supertypes is significantly overestimated (even if the frequency of a given supertype is underestimated), which may contribute to development of too-long heat waves/cold spells. We did not identify any substantial improvement in the EURO-CORDEX RCMs in comparison to previous ENSEMBLES RCMs, but the patterns of the biases are generally less conclusive as to general RCMs’ drawbacks.


Upravlenets ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 62-77
Author(s):  
Tatyana Basnina ◽  
Lilia Valitova ◽  
Marina Sheresheva

. Amid the COVID-19 pandemic, the need for effective government decisions in the field of public health is becoming increasingly urgent. The article discusses the issues of the Russian health resort industry management as a complex system that plays a key role in the preservation and qualitative improvement of the country’s human potential. The concepts of sustainable development, human potential development, rehabilitation medicine and the system-based approach in management constitute the methodological basis of the research. The methods of analysis, synthesis, systematization and statistical observation are applied. We juxtapose the official statistical data that reflect the state and trends in the health resort industry’s development during the pre-pandemic period. The study identifies the challenges in the health resort industry management and develops the ways to create conditions for qualitative shifts in the field of public well-being and health, and human potential development. The authors substantiate the need to create a modern health resort industry in Russia with a new rest / treatment infrastructure, a regulatory and legislative framework, and information systems for data exchange. Solving this problem requires fundamental changes in the fields of finance and taxation, as well as the training of management staff. We conclude that amid the pandemic, along with serious negative effects, there also emerge incentives to reconstruct the health resort system, which should be founded on long-term government policy measures and system-based management decisions.


2021 ◽  
Author(s):  
Dariusz Zajączkowski ◽  
Ewa Łupikasza

<p>Solar radiation reaching the Earth’s surface is a crucial energy source in the climate system and the primary factor regulating the planet energy balance. The amount of solar radiation reaching the Earth surface is conditioned by the atmosphere composition and its transparency that is determined by the content of aerosols, moisture and clouds. The Górnośląsko-Zagłębiowska Metropolis (GZM) located in southern Poland, is the most urbanized part of the country and one of the most polluted parts of Europe, which has an impact on the atmosphere transparency and amount of global radiation at the Earth's surface. This study aims to determine the daily and annual variability in global radiation and its relationship with cloudiness, selected cloud types and atmospheric circulation.</p><p>This study is based on unique 10-minute global radiation data measured in the centre of GZM  at the meteorological station of the faculty of Earth Sciences. The data covers the periods between 2002 and 2019. Average radiation intensity was converted into hourly and daily radiation sums expressed in MJ/m<sup>2</sup>. Data on cloudiness were taken from the synoptic station Katowice Muchowiec located 9.6 km far from the meteorological station in GZM. The degree of cloud cover is expressed in a percentage of the sky covered with clouds. To analyse relationships between atmospheric circulation and global radiation, the calendar of circulation types and air masses for southern Poland was used.</p><p>Daily course calculated based on annual data showed that global radiation reached its highest values of 1.5 MJ/m<sup>2</sup> at 10 UTC. The highest hourly sums of global radiation varied seasonally from about 0.5 MJ/m<sup>2</sup> in winter to 2.0 MJ/m<sup>2</sup> in summer. The widest range of variability in particular hours was found in spring (the quartiles: 1.2 - 2.0 MJ/m<sup>2</sup>) and autumn (quartiles: 0.7 to 1.4 MJ/m<sup>2</sup>). It occurred that most cloudiness classes enhanced the global radiation compared to cloudless conditions. The highest radiation sums were recorded during the days with a cloudiness >0 and ≤20%. During such days, global radiation was higher by 3.2 MJ/m<sup>2</sup> than during cloudless days and 7.0 MJ/m<sup>2</sup> than the long-term average 2002-2019. Daily global radiation was lower than the long-term average by about 3.0 MJ/m<sup>2</sup> only during days with cloudiness > 80%. Cirrus, cirrostratus, cirrocumulus and cumulus enhanced global radiation by about 40% compared to the long-term average. Altostratus, nimbostratus and stratus reduced the global radiation by about 75% compared to the long-term average. Global radiation also varied depending on circulation types. Extreme values of global radiation were registered under non-advective anticyclonic conditions and during southern advection (maximum 15.0 MJ/m<sup>2</sup>) and during cyclonic types with air advection from the north (minimum 6.8 MJ/m<sup>2</sup>)</p>


2012 ◽  
Vol 1 (1) ◽  
pp. 13-20
Author(s):  
Joanna Jędruszkiewicz ◽  
Piotr Piotrowski

Abstract Thermal conditions are largely determined by atmospheric circulation. Therefore, projection of future temperature changes should be considered in relation to changes in circulation patterns. This paper assess to what extent changes in circulation correspond to spatial variability of the winter temperature increase in Poland in 2021-2050 period based on the RACMO2 model. The daily data of the mean temperature and sea level pressure (SLP) from selected regional climate model and observations were used. SLP data were used to determine the advection types and circulation character. Firstly, changes in frequency of circulation types between 2021-2050 and 1971-2000 periods were examined. Then changes in air temperature for specific circulation type in relation to reference period were studied. Finally, the influence of atmospheric circulation on spatial temperature variation was discussed. Considerably high increase in cyclonic situation of more than 18%, especially from the west and south-west direction, and decrease in anticyclonic situation mainly from the west and northwest in winter was noticed. Changes in frequency of circulation types result in temperature growth. For some types it is predicted that warming can reach even 3-4°C. The cyclonic (Ec, SEc, Sc) and anticylonic (SEa, Sa, Ea) types are likely to foster the highest warming in the scenario period.


Sign in / Sign up

Export Citation Format

Share Document