scholarly journals Assessment of two different methods of calculating a heating demand

2019 ◽  
Vol 14 (2) ◽  
pp. 51-60
Author(s):  
Peter Turcsányi ◽  
Anna Sedláková

AbstractPhenomenon of today′s era is lowering overall energy performance and greenhouse gas emissions. European Union and its members came from an “uncontrollable” fossil fuel usage to an era of dependence reduction from fossil fuel usage. EU industry is now in era of utilizing renewable energy sources. Construction industry is responsible for 40% of total energy performance of EU; hence the great emphasis on energy effective design on new buildings as well as importance on energy effective renovation of already constructed buildings. Effort on lowering total energy performance in construction industry has signed on research on new project solutions, new insulation materials and new building services technologies which are maximizing energy gain from renewable energy sources. Simulation software and different engines are more than helpful tool when predicting building thermal behaviour. That is why simulation software is used more often in the process of designing energy efficient buildings or in the process of energy performance optimization of existing buildings. simulation and analytics itself, is dealing with simulation of chosen buildings (family houses) on heating demand based on the newest knowledge of constructions and materials. Results of heating demands of different family houses were confronted against heating demands calculated according national standards – using non-variable conditions. Next, the differences between two calculation approaches were characterized in percentages.

Nanoscale ◽  
2022 ◽  
Author(s):  
Bingbing Cui ◽  
Guo-Dong Fu

The fossil-fuel shortage and severe environmental issues have posed ever-increasing demands on clean and renewable energy sources, for which the exploration of electrocatalysts has been in a big challenge toward...


Author(s):  
Я.М. КАШИН ◽  
Л.Е. КОПЕЛЕВИЧ ◽  
А.В. САМОРОДОВ ◽  
Ч. ПЭН

Описаны конструктивные особенности трехвходовой аксиальной генераторной установки (ТАГУ), преобразующей кинетическую энергию ветра и световую энергию солнца и суммирующей механическую, световую и тепловую энергию с одновременным преобразованием полученной суммарной энергии в электрическую. Показаны преимущества ТАГУ перед двухвходовыми генераторными установками. Дополнительное включение стабилизатора напряжения в схему ТАГУ позволило расширить область применения стабилизированной трехвходовой аксиальной генераторной установки за счет стабилизации ее выходного напряжения. The design features of the three-input axial generating installation (TAGI), which converts the kinetic energy of wind and light energy of the sun and sums the mechanical, light and thermal energy with the simultaneous conversion of the total energy into electrical energy, are described. The benefits of TAGI in front of the two-input generating installation shown. The additional introduction of a voltage regulator into the TAGI scheme allowed to expand the scope of the stabilized three-input axial generating installation by stabilizing its output voltage.


2018 ◽  
Vol 17 (2) ◽  
pp. 31-36
Author(s):  
Abir Muhtadi ◽  
Ahmed Mortuza Saleque ◽  
Mohammad Abdul Mannan

Due to sheer dependency upon fossil fuel sources, Bangladesh as a country is not free from numerous negative aspects. Country’s requirement for a certain portion of power be generated from renewable energy sources is due and required renewable energy target (RET) needs to be fulfilled. In this study, potential of distinguished coastal sites for entirely renewable energy such as solar and wind sources based microgrid for chosen community is explored. Microgrid architecture is appropriate considering the coastal areas’ geographical locations and due to the inconvenience in grid extension. Study suggests, potential of coastal sites are found to be feasible for such structures based on real case scenario data and modelled technical scheme.


2020 ◽  
Vol 197 ◽  
pp. 02010
Author(s):  
Giada Romano ◽  
Elisa Pennacchia ◽  
Sofia Agostinelli

Buildings with architectural constraints and recognized historical values require a careful design process, aiming to combine the needs of conservation and the adaptation of the buildings to the modern use and its accessibility. The feasible interventions consist in improving the energy performance of the building envelope, in inserting efficient technological systems and using renewable energy sources where possible. The compatibility between the architectural constraints of the building and its more sustainable future use represents a crucial challenge. This work presents the interventions designed and realized on a small villa located in the Prati district, in Rome. Starting from the requests of the client, the primary objective was to create a comfortable house both in the winter and in the summer season, with widespread use of automation systems for managing the utilities. In line with the current energy scenario, the interventions were oriented to energy efficiency, the reduction of polluting emissions, the electrification of utilities and the use of renewable energy sources. The proposed solutions showed high gains in terms of energy saving even if the changes to the building envelope were limited by the desire to preserve the values of the cultural heritage. Therefore, a virtuous refurbishment can effectively respond to current energy efficiency goals.


1998 ◽  
Vol 27 (2) ◽  
pp. 129-132
Author(s):  
Bobboi Umar

Renewable energies have great potential to improve agricultural activities and rural development. Positive results are already being achieved with these relatively benign energies in many countries. In Nigeria, there is need to improve agricultural production for the increasing population and to conserve the fossil fuel reserves. Although renewable energy sources such as solar radiation and biomass are abundant, harnessing them for agricultural and rural development needs is very slow. This article extols the virtues of these energy sources, analyses the progress made so far in renewable energy technologies in Nigeria, identifies the major obstacles and suggests some solutions to overcome them.


2017 ◽  
Vol 54 (6) ◽  
pp. 21-31
Author(s):  
G. Zaleskis

Abstract Integration of renewable energy sources and the improvement of the technological base may not only reduce the consumption of fossil fuel and environmental load, but also ensure the power supply in regions with difficult fuel delivery or power failures. The main goal of the research is to develop the methodology of evaluation of the wind turbine economic efficiency. The research has demonstrated that the electricity produced from renewable sources may be much more expensive than the electricity purchased from the conventional grid.


2021 ◽  
Vol 13 (24) ◽  
pp. 13934
Author(s):  
Hanan S. S. Ibrahim ◽  
Ahmed Z. Khan ◽  
Yehya Serag ◽  
Shady Attia

Retrofitting “nearly-zero energy” heritage buildings has always been controversial, due to the usual association of the “nearly-zero energy” target with high energy performance and the utilization of renewable energy sources in highly regarded cultural values of heritage buildings. This paper aims to evaluate the potential of turning heritage building stock into a “nearly-zero energy” in hot, dry climates, which has been addressed in only a few studies. Therefore, a four-phase integrated energy retrofitting methodology was proposed and applied to a sample of heritage residential building stock in Egypt along with microscale analysis on buildings. Three reference buildings were selected, representing the most dominant building typologies. The study combines field measurements and observations with energy simulations. In addition, simulation models were created and calibrated based on monitored data in the reference buildings. The results show that the application of hybrid passive and active non-energy generating scenarios significantly impacts energy use in the reference buildings, e.g., where 66.4% of annual electricity use can be saved. Moreover, the application of solar energy sources approximately covers the energy demand in the reference buildings, e.g., where an annual self-consumption of electricity up to 78% and surplus electricity up to 20.4% can be achieved by using photo-voltaic modules. Furthermore, annual natural gas of up to 66.8% can be saved by using two unglazed solar collectors. Lastly, achieving “nearly-zero energy” was possible for the presented case study area. The originality of this work lies in developing and applying an informed retrofitting (nearly-zero energy) guide to be used as a benchmark energy model for buildings that belong to an important historical era. The findings contribute to fill a gap in existing studies of integrating renewable energy sources to achieve “nearly-zero energy” in heritage buildings in hot climates.


2021 ◽  
Vol 2069 (1) ◽  
pp. 012151
Author(s):  
Georgios Chantzis ◽  
Panagiota Antoniadou ◽  
Maria Symeonidou ◽  
Effrosyni Giama ◽  
Simeon Oxizidis ◽  
...  

Abstract The need to create and maintain a sustainable indoor environment is now more than ever compelling. Both the legislation framework concerning the energy performance of buildings, as determined in its evolution through the EU Directives 2010/31/EU, 2012/27/EU and 2018/844/EU, and the European strategic plans towards green buildings, denote the need of sustainability and comfort of indoor environment for the occupant. Moreover, the EU Directive 2018/2001 sets the renewable energy target of at least 32% for 2030, denoting that the high renewable energy sources penetration level leads to challenges in the design and control of power generation, transmission and distribution. Demand side management may be able to provide buildings with the energy flexibility needed, in order to utilize the intermittent production of Renewable Energy Sources in a much more efficient and cost-effective way. The flexibility potential of installed building systems is investigated, while considering the effects on the indoor environment conditions and the perceived comfort. The implemented Demand Response (DR) control strategy shifts loads by changing heating system set point temperatures, based on market clearing prices of the day ahead market. The results indicated a reduction in energy consumption and energy costs, while maintaining indoor environment quality at satisfactory levels.


Author(s):  
Bharat Raj Singh ◽  
Onkar Singh

Greater use of hydrocarbon fuel has led to fast depletion of fossil fuel reserves. This has now become worldwide problem making civilization vulnerable due to paucity of fuel in future. It is also a fact that as civilization is growing the use of transport has become essential part of life. The use of large number of vehicles for transport is contributing to about 70% of total air pollution, creating environmental & ecological imbalances. About 100–150 years old transport technology is totally based on combustions causing higher rate of emission, ultimately depleting the thickness of Ozone layer and causing the global warming. Thus worldwide fast depletion of conventional energy resources necessitates the search of alternatives such as Non-Conventional Energy Sources, Renewable Energy Sources and other Direct Conversion of Energy Sources. This paper deals with study on potential of renewable energy resources and their conversion system with emphasis on development of zero pollution engine for vehicles which may lead to sustainable future.


Sign in / Sign up

Export Citation Format

Share Document