Spatial monitoring of the liquid phase with multiparameter sensors in industrial-scale fermenters

2017 ◽  
Vol 84 (10) ◽  
Author(s):  
Ute Enseleit ◽  
Anika Bockisch ◽  
Sandra Sachse ◽  
Erich Kielhorn ◽  
Peter Neubauer ◽  
...  

AbstractThis work describes the development and application of different lance-based monitoring systems coupled to an integrated multiparameter sensor probe for the spatial investigation of the liquid phase in biotechnological processes. Miniaturized electrochemical sensors are integrated into a housing, which is fixed at the head of a lance, both made of stainless steel. It can be moved inside a reactor in horizontal direction by the lance itself and in vertical direction by a flexible rope, which is connected to the sensor probe. Inserting the sensor unit directly into the liquid phase of a fermenter, e.g. in laminar processes like biogas and beer production, coupled with multiposition measurements allows to obtain space and time resolved data. The monitored parameters are the pH value, the redox potential, the temperature, and the concentration of dissolved carbon dioxide. Wireless data transfer is realized by means of radio technology with the virtual control center RAMOC (Radio Aided Monitoring) of the company innotas GmbH. Results of the

2006 ◽  
Vol 03 (04) ◽  
pp. 301-309 ◽  
Author(s):  
JINSHENG SUN ◽  
NING WANG ◽  
LIPING LIU

This paper points out the disadvantages of a formerly proposed data transfer mode used in the monitoring system of WTP. A data transmit solution which uses ZigBee wireless communication standard is proposed, and the technical characteristic of ZigBee technology is introduced. The hardware structure and software design are presented. The paper emphasizes on the realization of ZigBee protocol and data communication flow. The experimental results show that ZigBee is suitable for the wireless data transmission in the WTP. The reliable transmission of data to the control center of WTP has been realized in some in situ applications.


Metals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 515
Author(s):  
Wei-Sheng Chen ◽  
Shota Mesaki ◽  
Cheng-Han Lee

Tin anode slime is a by-product of the tin electrolytic refining process. This study investigated a route to separate Sn, Sb, Bi, and Cu from tin anode slime after leaching with hydrochloric acid. In the solvent extraction process with tributyl phosphate, Sb and Sn were extracted into the organic phase. Bi and Cu were unextracted and remained in the liquid phase. In the stripping experiment, Sb and Sn were stripped and separated with HCl and HNO3. Bi and Cu in the aqueous phase were also separated with chemical precipitation procedure by controlling pH value. The purities of Sn, Sb, Cu solution and the Bi-containing solid were 96.25%, 83.65%, 97.51%, and 92.1%. The recovery rates of Sn, Sb, Cu, and Bi were 76.2%, 67.1%, and 96.2% and 92.4%.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Sicong Wang ◽  
Chen Wei ◽  
Yuanhua Feng ◽  
Hongkun Cao ◽  
Wenzhe Li ◽  
...  

AbstractAlthough photonics presents the fastest and most energy-efficient method of data transfer, magnetism still offers the cheapest and most natural way to store data. The ultrafast and energy-efficient optical control of magnetism is presently a missing technological link that prevents us from reaching the next evolution in information processing. The discovery of all-optical magnetization reversal in GdFeCo with the help of 100 fs laser pulses has further aroused intense interest in this compelling problem. Although the applicability of this approach to high-speed data processing depends vitally on the maximum repetition rate of the switching, the latter remains virtually unknown. Here we experimentally unveil the ultimate frequency of repetitive all-optical magnetization reversal through time-resolved studies of the dual-shot magnetization dynamics in Gd27Fe63.87Co9.13. Varying the intensities of the shots and the shot-to-shot separation, we reveal the conditions for ultrafast writing and the fastest possible restoration of magnetic bits. It is shown that although magnetic writing launched by the first shot is completed after 100 ps, a reliable rewriting of the bit by the second shot requires separating the shots by at least 300 ps. Using two shots partially overlapping in space and minimally separated by 300 ps, we demonstrate an approach for GHz magnetic writing that can be scaled down to sizes below the diffraction limit.


2012 ◽  
Vol 3 ◽  
pp. 629-636 ◽  
Author(s):  
Gilad Gotesman ◽  
Rahamim Guliamov ◽  
Ron Naaman

We studied the photoluminescence and time-resolved photoluminescence from self-assembled bilayers of donor and acceptor nanoparticles (NPs) adsorbed on a quartz substrate through organic linkers. Charge and energy transfer processes within the assemblies were investigated as a function of the length of the dithiolated linker (DT) between the donors and acceptors. We found an unusual linker-length-dependency in the emission of the donors. This dependency may be explained by charge and energy transfer processes in the vertical direction (from the donors to the acceptors) that depend strongly on charge transfer processes occurring in the horizontal plane (within the monolayer of the acceptor), namely, parallel to the substrate.


2006 ◽  
Vol 59 (2) ◽  
pp. 81 ◽  
Author(s):  
Ales Charvat ◽  
Andreas Bógehold ◽  
Bernd Abel

Liquid water beam desorption mass spectrometry is an intriguing technique to isolate charged molecular aggregates directly from the liquid phase and to analyze them employing sensitive mass spectrometry. The liquid phase in this approach consists of a 10 µm diameter free liquid filament in vacuum which is irradiated by a focussed infrared laser pulse resonant with the OH-stretch vibration of bulk water. Depending upon the laser wavelength, charged (e.g. protonated) macromolecules are isolated from solution through a still poorly characterized mechanism. After the gentle liquid-to-vacuum transfer the low-charge-state aggregates are analyzed using time-of-flight mass spectrometry. A recent variant of the technique uses high performance liquid chromatography valves for local liquid injections of samples in the liquid carrier beam, which enables very low sample consumption and high speed sample analysis. In this review we summarize recent work to characterize the ‘desorption’ or ion isolation mechanism in this type of experiment. A decisive and interesting feature of micro liquid beam desorption mass spectrometry is that — under certain conditions — the gas-phase mass signal for a large number of small as well as supramolecular systems displays a surprisingly linear response on the solution concentration over many orders of magnitude, even for mixtures and complex body fluids. This feature and the all-liquid state nature of the technique makes this technique a solution-type spectroscopy that enables real kinetic studies involving (bio)polymers in solution without the need for internal standards. Two applications of the technique monitoring enzyme digestion of proteins and protein aggregation of an amyloid model system are highlighted, both displaying its potential for monitoring biokinetics in solution.


2017 ◽  
Author(s):  
S. Sangeetha ◽  
Santhi Priya ◽  
K. S. Saranya ◽  
S. Saranya ◽  
T. Jayasimha

2018 ◽  
Vol 10 (12) ◽  
pp. 168781401881349
Author(s):  
Lijing Dong

Synchronization of a large-scale lifting system with hydraulic actuator failures is investigated in this article. The lifting system is composed of multiple intelligent lifting subsystems with hydraulic actuators, wireless data transfer unit, and distributed controller. During the lifting process, the hydraulic actuators are possible to be malfunctioned. Once actuator failure occurs, the number of lifting points and the communication topology would change over different time intervals. This article proposes a distributed synchronization control method and adopts switching technique in analyzing the lifting synchronization. The distributed controller is designed with information received from around subsystems through wireless data transfer unit rather than with direct reference signal from the control station. On the basis of Lyapunov stability theory and switched technique, sufficient conditions that guarantee the synchronization of the lifting system with actuator failures are achieved, and synchronization errors can be reduced as small as desired. Finally, the effectiveness of proposed distributed synchronization controller is verified by numerical simulations conducted on AMESim platform. From the simulation results, it can be seen that when actuator failures occur, the synchronization error of the remaining lifting subsystems is less than 5%. The lifting synchronization error shrinks to 5% in 5.87 s when a broke-down subsystem returns to normal.


2010 ◽  
Vol 19 (3) ◽  
pp. 12
Author(s):  
Mun Cheol PAEK ◽  
Min Hwan KWAK ◽  
Sungil KIM ◽  
Seung Beom KANG ◽  
Hancheol RYU ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document