Anti-inflammatory effect of D-pinitol isolated from the leaves of Colutea cilicica Boiss et Bal. on K562 cells

2017 ◽  
Vol 42 (4) ◽  
Author(s):  
Ferda Eser ◽  
Ergul Mutlu Altundag ◽  
Gülsah Gedik ◽  
Ibrahim Demirtas ◽  
Adem Onal ◽  
...  

AbstractAim:D-pinitol, a natural compound has shown various biological and pharmacological effects. Last studies are focused on the determination of its further pharmacological activities including mainly biological activity. Therefore, isolation of D-pinitol from the leaves ofMaterials and methods:Isolation of D-pinitol was performed by column chromatography. Chemical structure of the compound was confirmed by spectroscopic methods includingResults:Stimulation of cells with D-pinitol (0–80 μM) was observed for 24, 48 and 72 h. It is determined that D-pinitol inhibited protein expression of Cox-2 in K562 cells. We observed that Poly (ADP-ribose) polymerase (PARP) protein expression did not change, but Cox-2 protein expression reduced with non-cytotoxic concentrations of D-pinitol.Conclusion:It is concluded that D-pinitol did not affect cell proliferation and apoptosis in K562 cells however reduced the inflammation, significantly. These results show that D-pinitol may be anti-inflammatory agent for the treatment of K562 cells.

2019 ◽  
Vol 70 (7) ◽  
pp. 2534-2537
Author(s):  
Gladiola Tantaru ◽  
Mihai Apostu ◽  
Antonia Poiata ◽  
Mihai Nichifor ◽  
Nela Bibire ◽  
...  

The paper presents the synthesis of a new complex combination of a Bis-Schiff base with Mn(II) ions with great potential for antimicrobial and anti-inflammatory activity. A new complex of the Salen-type ligand, 1-ethyl-salicylidene-bis-ethylene diamine was synthetized using Mn(II) ions. The chemical structure was confirmed through 1H-NMR and IR spectroscopy. The antimicrobial activities of the Bis-Schiff base and its complex were tested in comparison with Ampicillin, Chloramphenicol, Tetracycline, Ofloxacin and Nystatin. Those compounds were found to be active against Gram-positive or Gram-negative bacteria, and had an anti-inflammatory effect comparable to that of Indomethacin.


Author(s):  
Mustafa H. Ali Alsafi ◽  
Muthanna S. Farhan

Mefenamic acid (MA) is one of the non-steroidal anti-inflammatory drugs, it is widely used probably due to having both anti-inflammatory and analgesic activity, the main side effects of mefenamic acid include gastrointestinal tract (GIT) disturbance mainly diarrhea, peptic ulceration, and gastric bleeding. The analgesic effects of NSAIDs are probably linked to COX-2 inhibition, while COX-1 inhibition is the major cause of this classic adverse effects. Introduction of thiazolidinone may lead to the increase in the bulkiness leads to the preferential inhibition of COX-2 rather than COX-1 enzyme. The study aimed to synthesize derivatives of mefenamic acid with more potency and to decrease the drug's potential side effects, new series of 4-thiazolidinone derivatives of mefenamic acid were synthesized IVa-g. The synthetic procedures for target compounds and their intermediates are designed to be as follows: acylation of secondary amine of mefenamic acid by chloroacetylchloride to produce compound (I), then reaction between compound (I) and hydrazine hydrate to form hydrazine derivative of mefenamic acid (compound II). After that, Schiff base formation by addition of seven benzaldehyde derivatives and finally, cyclization in presence of thioglycolic acid to form 4-thiazolidinone heterocyclic ring. The characterization of the titled compounds has been established on the basis of their spectral FTIR, 1HNMR data, and by measurements of their physical properties. In vivo acute anti-inflammatory effect of the synthesized compounds was evaluated in rats using egg-white induced edema model of inflammation. The tested compounds and the reference drug produced significant reduction of paw edema with respect to the effect of dimethyl sulfoxide 10%v/v (control group). Compound IVe showed more potent effect than mefenamic acid at 240-300 min, while at time 300 min, compounds IVa and IVd exhibit more potent anti-inflammatory effect than mefenamic acid (50mg/kg, i.p.) as they reduced paw edema significantly more than mefenamic acid at mentioned intervals (p<0.05) . On the other hand compound IVc exhibited lower anti-inflammatory effect.


2021 ◽  
pp. 38-45
Author(s):  
N.I. Dubovskaya ◽  
M.S. Zolotareva ◽  
A.V. Panov ◽  
S.A. Kedik

The article presents the development of a technology for obtaining a dry extract of oak bark and the quantitative determination of tannins in it. Oak bark extract is used medicinally as a local anti-inflammatory agent. The development of a technology for obtaining a dry extract will provide more opportunities for its use.


Author(s):  
Amit Kumar Jha ◽  
Amit Kumar Jha

Various exogenous and endogenous stimuli incite a complex reaction in vascularized connective tissue called inflammation. Non sterodial antiinflammatory drugs are used to reduce inflammation Preferential COX-2 inhibitors namely diclofenac and aceclofenac was taken for my present work and anti inflammatory effect was compared with control and with each other. Student-t-test-was done to compare result. It was found that inflammation varied significantly across the three groups (P=000) compared to control, in~lammation was less in both diclofenac and aceclofenac (P=00). Reduction of inflammation with diclofenac was less, in comparision to aceclofenac at end. Aceclofenac is more efficacious than diclofenac. Keywords: Aceclofenac, diclofenac, Anti inflammatory effect


Biomolecules ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1619
Author(s):  
Cornelia Fursenco ◽  
Tatiana Calalb ◽  
Livia Uncu ◽  
Mihaela Dinu ◽  
Robert Ancuceanu

Solidago virgaurea L. (European goldenrod, Woundwort), Asteraceae, is a familiar medicinal plant in Europe and other parts of the world, widely used and among the most researched species from its genus. The aerial parts of European goldenrod have long been used for urinary tract conditions and as an anti-inflammatory agent in the traditional medicine of different peoples. Its main chemical constituents are flavonoids (mainly derived from quercetin and kaempferol), C6-C1 and C6-C3 compounds, terpenes (mostly from the essential oil), and a large number of saponin molecules (mainly virgaureasaponins and solidagosaponins). Published research on its potential activities is critically reviewed here: antioxidant, anti-inflammatory, analgesic, spasmolitic, antihypertensive, diuretic, antibacterial, antifungal, antiparasite, cytotoxic and antitumor, antimutagenic, antiadipogenic, antidiabetic, cardioprotective, and antisenescence. The evidence concerning its potential benefits is mainly derived from non-clinical studies, some effects are rather modest, whereas others are more promising, but need more confirmation in both non-clinical models and clinical trials.


2017 ◽  
Vol 8 (3) ◽  
pp. 407-419 ◽  
Author(s):  
S.-M. Lim ◽  
H.M. Jang ◽  
S.-E. Jang ◽  
M.J. Han ◽  
D.-H. Kim

In the present study, we isolated Lactobacillus fermentum IM12 from human gut microbiota, which strongly inhibited interleukin (IL)-6 expression and STAT3 activation in lipopolysaccharide (LPS)-stimulated murine peritoneal macrophages, and examined its anti-inflammatory effect in mice with carrageenan-induced hind-paw oedema (CIE) or 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis (TIC). Oral administration of IM12 (0.2×109, 1×109 or 5×109 cfu/mouse, once a day for 3 days) in mice with CIE significantly suppressed the increase of oedema volume and thickness, as well as myeloperoxidase activity and IL-6, IL-17, NO, and prostaglandin E2 levels in the carrageenan-stimulated paw. Treatment with IM12 (1×109 cfu/mouse, once a day for 3 days) in mice with TIC significantly suppressed colon shortening, and myeloperoxidase activity and IL-6 and IL-17 levels. Treatment with IM12 in mice with CIE or TIC also suppressed the expression of inducible NO synthase (iNOS) and cyclooxygenase (COX)-2, as well as activation of nuclear factor kappa beta (NF-κB) and signal transducer and activator of transcription 3 (STAT3). Furthermore, IM12 significantly inhibited the expression of iNOS, and COX-2, as well as activation of NF-κB in LPS-stimulated mouse peritoneal macrophages. The inflammatory effect of heat-inactivated IM12 was significantly different to that of live IM12 in mice with TIC, although anti-inflammatory effect of IM12 was reduced by heat treatment. Based on these findings, IM12 may attenuate inflammation by inhibiting NF-κB-STAT3 signalling pathway.


Sign in / Sign up

Export Citation Format

Share Document