Design and aerodynamic performance analysis of a variable geometry axisymmetric inlet for TBCC

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Yunfei Wang ◽  
Huacheng Yuan ◽  
Jinsheng Zhang ◽  
Zhenggui Zhou

Abstract Design and aerodynamic performance analysis of a variable geometry axisymmetric inlet was carried out for tandem scheme turbine-based combined cycle (TBCC) propulsion system. The operation Mach number of the inlet was between 0 and 4. The design point was chosen as Mach number 4.0 in this paper. The determination of external and internal compression and the design method of annular to circle diffuser were illustrated. The inlet was unstart under Ma 3.0 without adjustment. Then, a variable scheme was designed to ensure self-start of the inlet and match the requirement of mass flow rate during the whole flight envelope. And four supports were used to fix the spike. According to the 3D numerical simulations, the total pressure recovery was 0.52 at Ma 4.0 at critical condition and the mass flow rate was consistent with the requirement at different flight Mach number.

2019 ◽  
Vol 826 ◽  
pp. 117-124
Author(s):  
Yurii Baidak ◽  
Iryna Vereitina

The paper relates to the field of measuring technologies and deals with the enhancement of thermoconvective method when it is applied for the experimental determination of such hydrodynamics indicators as mass flow rate and velocity of flow by their indirect parameters - capacity of the heater and the temperatures obtained from two thermal sensors, provided that they are located on the hermetic piping system surface. The issue of determination of correction factor on heterogeneity of liquid temperature distribution in the pipe cross section depending on pipe diameter and fluid movement velocity was clarified. According to the results of numerical calculations, the dependencies of temperature gradient on the pipe surface and the correction factor on the heterogeneity of the temperature distribution along the pipe cross-section under the heater in the function of the velocity of flow in pipes of different diameters are plotted. These dependencies specify the thermal method of studying the fluid flow in the pipes, simplify the experiment conduction, are useful in processing of the obtained results and can be applied in measuring engineering.


Author(s):  
Yang Chen ◽  
Jun Li ◽  
Chaoyang Tian ◽  
Gangyun Zhong ◽  
Xiaoping Fan ◽  
...  

The aerodynamic performance of three-stage turbine with different types of leakage flows was experimentally and numerically studied in this paper. The leakage flows of three-stage turbine included the shroud seal leakage flow between the rotor blade tip and case, the diaphragm seal leakage flow between the stator blade diaphragm and shaft, as well as the shaft packing leakage flow and the gap leakage flow between the rotor blade curved fir-tree root and wheel disk. The total aerodynamic performance of three-stage turbine including leakage flows was firstly experimentally measured. The detailed flow field and aerodynamic performance were also numerically investigated using three-dimensional Reynolds-Averaged Navier-Stokes (RANS) and S-A turbulence model. The numerical mass flow rate and efficiency showed well agreement with experimental data. The effects of leakage flows between the fir-tree root and the wheel disk were studied. All leakage mass flow fractions, including the mass flow rate in each hole for all sets of root gaps were given for comparison. The effect of leakage flow on the aerodynamic performance of three-stage was illustrated and discussed.


Author(s):  
Kang Song ◽  
Devesh Upadhyay ◽  
Hui Xie

Control-oriented models of turbocharger processes such as the compressor mass flow rate, the compressor power, and the variable geometry turbine power are presented. In a departure from approaches that rely on ad hoc empirical relationships and/or supplier provided performance maps, models based on turbomachinery physics and known geometries are attempted. The compressor power model is developed using Euler’s equations of turbomachinery, where the gas velocity exiting the rotor is estimated from an empirically identified correlation for the ratio between the radial and tangential components of the gas velocity. The compressor mass flow rate is modeled based on mass conservation, by approximating the compressor as an adiabatic converging-diverging nozzle with compressible fluid driven by external work input from the compressor wheel. The variable geometry turbine power is developed with Euler’s equations, where the turbine exit swirl and the gas acceleration in the vaneless space are neglected. The gas flow direction into the turbine rotor is assumed to align with the orientation of the variable geometry turbine vane. The gas exit velocity is calculated, similar to the compressor, based on an empirical model for the ratio between the turbine rotor inlet and exit velocities. A power loss model is also proposed that allows proper accounting of power transfer between the turbine and compressor. Model validation against experimental data is presented.


Materials ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4182
Author(s):  
Emil Sasimowski ◽  
Łukasz Majewski ◽  
Marta Grochowicz

The study investigates the effect of the content and size of wheat bran grains on selected properties of a lignocellulosic biocomposite on a polyethylene matrix. The biocomposite samples were made by injection method of low-density polyethylene with 5%, 10% and 15% by weight of wheat bran. Three bran fractions with grain sizes <0.4 mm, 0.4–0.6 mm and 0.6–0.8 mm were used. The properties of the mouldings (after primary shrinkage) were examined after their 2.5-year natural aging period. Processing properties, such as MFR (mass flow rate) and processing shrinkage, were determined. Selected physical, mechanical and structural properties of the produced biocomposite samples were tested. The results allowed the determination of the influence of both the content of bran and the size of its grains on such properties of the biocomposite as: color, gloss, processing shrinkage, tensile strength, MFR mass flow rate, chemical structure (FTIR), thermal properties (DSC, TG), p-v-T relationship. The tests did not show any deterioration of the mechanical characteristics of the tested composites after natural aging.


Micromachines ◽  
2020 ◽  
Vol 11 (8) ◽  
pp. 758
Author(s):  
Zhi-xin Gao ◽  
Ping Liu ◽  
Yang Yue ◽  
Jun-ye Li ◽  
Hui Wu

Although check valves have attracted a lot of attention, work has rarely been completed done when there is a compressible working fluid. In this paper, the swing check valve and the tilting check valve flowing high-temperature compressible water vapor are compared. The maximum Mach number under small valve openings, the dynamic opening time, and the hydrodynamic moment acting on the valve disc are chosen to evaluate the difference between the two types of check valves. Results show that the maximum Mach number increases with the decrease in the valve opening and the increase in the mass flow rate, and the Mach number and the pressure difference in the tilting check valve are higher. In the swing check valve, the hydrodynamic moment is higher and the valve opening time is shorter. Furthermore, the valve disc is more stable for the swing check valve, and there is a periodical oscillation of the valve disc in the tilting check valve under a small mass flow rate.


Author(s):  
Héctor J. Bravo ◽  
José C. Ramos ◽  
César Celis

Abstract The intermittency of renewable energies continues to be a limitation for their more widespread application because their large-scale storage is not yet practical. Concentrating solar power (CSP) has the possibility of thermally storing this energy to be used in times of higher demand at a more feasible storage price. The number of concentrated solar energy related projects have grown rapidly in recent years due to the advances in the associated solar technology. Some of the remaining issues regarding the associated high investment costs can be solved by integrating the solar potential into fossil fuel generation plants. An integrated solar combined cycle system (ISCCS) tends to be less dependent to climatic conditions and needs less capital inversion than a CSP system, letting the plant be more reliable and more economically feasible. In this work thus, two technologies of solar concentration (i) parabolic trough cylinder (PTC) and (ii) solar tower (ST) are initially integrated into a three-pressure levels combined cycle power plant. The proposed models are then modeled, simulated and properly assessed. Design and off design point computations are carried out taking into account local environmental conditions such as ambient temperature and direct solar radiation (DNI). The 8760 hourly-basis simulations carried out allow comparing the thermal and economic performance of the different power plant configurations accounted for in this work. The results show that injecting energy into the cycle at high temperatures does not necessarily imply a high power plant performance. In the studied plant configurations, introducing the solar generated steam mass flow rate at the evaporator outlet is slightly more efficient than introducing it at cycle points where temperatures are higher. At design point conditions thus, the plant configuration where the referred steam mass flow rate is introduced at the evaporator outlet generates 0.42% more power than those in which the steam is injected at higher cycle temperatures. At off design point conditions this value is reduced to 0.37%. The results also show that the months with high DNI values and those with low mean ambient temperatures are not necessarily the months which lead to the highest power outputs. In fact a balance between these two parameters, DNI and ambient temperature, leads to an operating condition where the power output is the highest. All plant configurations analyzed here are economically feasible, even so PTC related technologies tend to be more economically feasible than ST ones due to their lower investment costs.


2014 ◽  
Vol 77 (1-4) ◽  
pp. 763-774 ◽  
Author(s):  
Pavol Hreha ◽  
Agáta Radvanská ◽  
Sergej Hloch ◽  
Vincent Peržel ◽  
Grzegorz Królczyk ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document