Research on a component characteristic adaptive correction method for variable cycle engines

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Sangwei Lu ◽  
Wenxiang Zhou ◽  
Jinquan Huang ◽  
Bo Wang

Abstract There is inevitably a performance deviation between an engine model and an actual engine that is influenced by unpredictable factors such as the unsuspected environmental conditions and the natural performance degradation in the process of use. Because the engine model precision largely depends on the accuracies of the component maps, it is possible to revise the engine model to determine a better trend for the engine performance from recorded measurements by adjusting the maps. This paper presents a new method for updating the variable geometry component maps of a variable cycle engine (VCE) by using a set of scaling factors estimated with the cubature Kalman filter (CKF). A mapping function is created between the scaling factors and the component characteristic scaling coefficients for the adjustments of the maps. The proposed method is applied to a VCE model according to the VCE benchmark steady-state performance data. The results show that the maximum simulation error of the engine steady-state model decreases from 5.33 to 0.93%, and the CKF-based adaptation method provides a much faster computing rate than the particle swarm optimization (PSO) based adaptation method, which verifies the effectiveness and engineering applicability of the variable geometry characteristic adaptive correction method.

IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 143127-143138 ◽  
Author(s):  
Peng Liu ◽  
Chao Xin ◽  
Yonghong Liu ◽  
Baoping Cai ◽  
Fan Zhang ◽  
...  

2011 ◽  
Vol 30 (6) ◽  
pp. 1366-1375 ◽  
Author(s):  
Erin R. Bennett ◽  
Jeffery A. Steevens ◽  
Guilherme R. Lotufo ◽  
Gord Paterson ◽  
Ken G. Drouillard

Author(s):  
Daniel Viassolo ◽  
Aditya Kumar ◽  
Brent Brunell

This paper introduces an architecture that improves the existing interface between flight control and engine control. The architecture is based on an on-board dynamic engine model, and advanced control and estimation techniques. It utilizes a Tracking Filter (TF) to estimate model parameters and thus allow a nominal model to match any given engine. The TF is combined with an Extended Kalman Filter (EKF) to estimate unmeasured engine states and performance outputs, such as engine thrust and turbine temperatures. These estimated outputs are then used by a Model Predictive Control (MPC), which optimizes engine performance subject to operability constraints. MPC objective and constraints are based on the aircraft operation mode. For steady-state operation, the MPC objective is to minimize fuel consumption. For transient operation, such as idle-to-takeoff, the MPC goal is to track a thrust demand profile, while minimizing turbine temperatures for extended engine time-on-wing. Simulations at different steady-state conditions over the flight envelope show important fuel savings with respect to current control technology. Simulations for a set of usual transient show that the TF/EKF/MPC combination can track a desired transient thrust profile and achieve significant reductions in peak and steady-state turbine gas and metal. These temperature reductions contribute heavily to extend the engine time-on-wing. Results for both steady state and transient operation modes are shown to be robust with respect to engine-engine variability, engine deterioration, and flight envelope operating point conditions. The approach proposed provides a natural framework for optimal accommodation of engine faults through integration with fault detection algorithms followed by update of the engine model and optimization constraints consistent with the fault. This is a potential future work direction.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
FengJun Hu ◽  
Qian Zhang ◽  
Gang Wu

Standard cubature Kalman filter (CKF) algorithm has some disadvantages in stochastic system control, such as low control accuracy and poor robustness. This paper proposes a stochastic system control method based on adaptive correction CKF algorithm. Firstly, a nonlinear time-varying discrete stochastic system model with stochastic disturbances is constructed. The control model is established by using the CKF algorithm, the covariance matrix of standard CKF is optimized by square root filter, the adaptive correction of error covariance matrix is realized by adding memory factor to the filter, and the disturbance factors in nonlinear time-varying discrete stochastic systems are eliminated by multistep feedback predictive control strategy, so as to improve the robustness of the algorithm. Simulation results show that the state estimation accuracy of the proposed adaptive cubature Kalman filter algorithm is better than that of the standard cubature Kalman filter algorithm, and the proposed adaptive correction CKF algorithm has good control accuracy and robustness in the UAV control test.


2019 ◽  
Vol 252 ◽  
pp. 05012
Author(s):  
Łukasz Grabowski ◽  
Konrad Pietrykowski ◽  
Paweł Karpiński

The analysis of the distribution of thermal energy generated during the combustion process in internal combustion engines and the estimation of individual losses are important regarding performance and efficiency. The article analyses the energy balance of the designed two-stroke opposed piston diesel engines with offset, i.e. the angle by which the crankshaft at the side of exhaust ports is ahead of the crankshaft at the side of intake ports. Based on the developed zero-dimensional engine model, a series of simulations were performed in steady-state conditions using the AVL BOOST software. The values of individual energy losses, including cooling losses, exhaust gas losses, friction losses were obtained. The influence of decreasing and increasing the offset on the performance of the tested engine was analysed.


Energies ◽  
2019 ◽  
Vol 12 (13) ◽  
pp. 2562 ◽  
Author(s):  
Guofeng Han ◽  
Yang Chen ◽  
Xiaoli Liu

The pulse decay test is the main method employed to determine permeability for tight rocks, and is widely used. The testing gas can be strongly adsorbed on the pore surface of unconventional reservoir cores, such as shale and coal rock. However, gas adsorption has not been well considered in analysis pulse decay tests. In this study, the conventional flow model of adsorbed gas in porous media was modified by considering the volume of the adsorbed phase. Then, pulse decay tests of equilibrium sorption, unsteady state and pseudo-steady-state non-equilibrium sorption models, were analyzed by simulations. For equilibrium sorption, it is found that the Cui-correction method is excessive when the adsorbed phase volume is considered. This method is good at very low pressure, and is worse than the non-correction method at high pressure. When the testing pressure and Langmuir volume are large and the vessel volumes are small, a non-negligible error exists when using the Cui-correction method. If the vessel volumes are very large, gas adsorption can be ignored. For non-equilibrium sorption, the pulse decay characteristics of unsteady state and pseudo-steady-state non-equilibrium sorption models are similar to those of unsteady state and pseudo-steady-state dual-porosity models, respectively. When the upstream and downstream pressures become equal, they continue to decay until all of the pressures reach equilibrium. The Langmuir volume and pressure, the testing pressure and the porosity, affect the pseudo-storativity ratio and the pseudo-interporosity flow coefficient. Their impacts on non-equilibrium sorption models are similar to those of the storativity ratio and the interporosity flow coefficient in dual-porosity models. Like dual-porosity models, the pseudo-pressure derivative can be used to identify equilibrium and non-equilibrium sorption models at the early stage, and also the unsteady state and pseudo-steady-state non-equilibrium sorption models at the late stage. To identify models using the pseudo-pressure derivative at the early stage, the suitable vessel volumes should be chosen according to the core adsorption property, porosity and the testing pressure. Finally, experimental data are analyzed using the method proposed in this study, and the results are sufficient.


Author(s):  
Claus Riegler ◽  
Michael Bauer ◽  
Holger Schulte

During turbofan development programs the evaluation of steady-state and transient engine performance is usually achieved by applying full thermodynamic engine models at least in the operating range between idle and maximum power conditions, but more recently also in the sub-idle operating range, e.g. for steady-state windmilling behavior and for starting, relight and shut down scenarios. The paper describes the setup, and in more detail the validation, of a full thermodynamic engine model for a two-spool mixed flow afterburner turbofan which is capable to run from maximum power down to zero speed and zero flow conditions in steady-state and transient mode. The validation is performed by using the model-based performance analysis procedure called ANSYN even in windmilling operation. Once the steady-state sub-idle model is validated the extension to transient sub-idle capability is achieved by simply adding the effects of rotor moment of inertia of the spools, while heat soakage effects are rather negligible without heat release in the burner. Especially lighting conditions in the burner are produced by such a validated sub-idle model inherently due to reliable data calculated at the burner entry station. The variety of applications of a validated full thermodynamic engine model is large. The performance data delivered is highly reliable and very consistent because the full operating range of the engine is covered with one model, and by appropriate means of speeding up the calculation even real-time capability may be achieved. In the paper synthesized data for an engine dry crank is compared to real engine test data as one typical application.


Sign in / Sign up

Export Citation Format

Share Document