Thermoelectric Power of the Liquid Sn—Te Alloy

1982 ◽  
Vol 37 (10) ◽  
pp. 1127-1131 ◽  
Author(s):  
D. H. Kurlat ◽  
M. Rosen

The Seebeck coefficient (S) of Sni1-x- Tex liquid alloys was measured as a function of concentration and temperature. For 0 ≦ x <0.45 the behaviour is metallic; S values are small and negative, rising linearly with temperature. The predicted values of Ziman's theory when using the hard sphere approximation disagree with the experimental ones. The change in sign occurs for 0.45. For x = 0.5 (stoichiometric composition) the thermoelectric power decreases linearly with temperature. This fact is explained assuming a two-band model. For x ≧ 0.6 the liquid alloy becomes more semiconducting and presents a maximum in the isotherms of S for x = 0.65. For the excess tellurium concentration range we have calculated the difference EF - EV and γ/kB, assuming a S(1/T) law. The experimental values are compared with those of Dancy and Glazov.

1975 ◽  
Vol 53 (5) ◽  
pp. 486-497 ◽  
Author(s):  
J. G. Cook ◽  
M. J. Laubitz ◽  
M. P. Van der Meer

Data are presented for the thermal and electrical resistivity and thermoelectric power of two samples of Ca (having residual resistance ratios of 10 and 70) between 30 and 300 K. Large deviations from both Matthiessen's rule and the Wiedemann–Franz relationship are observed. The former are tentatively attributed to the presence of two distinct groups of carriers in Ca, and analyzed using the two band model. The latter deviations are interpreted as the effects of band structure. The thermoelectric power of Ca is large. In many respects the transport properties of Ca appear to be similar to those of the transition metals.


1972 ◽  
Vol 50 (3) ◽  
pp. 196-205 ◽  
Author(s):  
M. J. Laubitz ◽  
T. Matsumura

The thermal conductivity, electrical resistivity, and absolute thermoelectric power of pure palladium have been determined from 90 to 1300 K in two experimental systems of proven reliability. These properties are compared with the sparse available literature data, and show large deviations from them, particularly for the thermal conductivity at high temperatures. The results are also analyzed in terms of a simple two-band model, where one band contains the carriers, and the other acts as a trap into which phonons scatter the carriers. When the recent density of states values of Mueller et al. are used, the model predicts correctly the temperature variation of the electrical resistivity, and reasonably well its observed magnitude and the observed Wiedemann–Franz ratio. However, the model fails badly in respect to the absolute thermoelectric power, predicting values twice as large as the observed ones. Modifications to the model are suggested which may improve the fit between the predicted and observed values.


1994 ◽  
Vol 49 (9) ◽  
pp. 6385-6387 ◽  
Author(s):  
V. P. S. Awana ◽  
V. N. Moorthy ◽  
A. V. Narlikar

Author(s):  
В.М. Грабов ◽  
В.А. Комаров ◽  
Е.В. Демидов ◽  
А.В. Суслов ◽  
М.В. Суслов

AbstractResults of an investigation of galvanomagnetic properties of Bi_95Sb_5 block thin films on substrates with different coefficients of thermal expansion covered with polyimide are presented. The difference between thermal expansions of the film material and the substrate was found to have a strong effect on the films’ galvanomagnetic properties. Analysis of the properties of the films using the two-band model showed that the concentration and mobility of the charge carriers in the Bi_95Sb_5 films are related to the coefficient of thermal expansion of the substrate material.


1974 ◽  
Vol 52 (10) ◽  
pp. 861-867 ◽  
Author(s):  
D. J. Huntley ◽  
R. F. Frindt

The Hall coefficient, magnetoresistance, and thermoelectric power of several specimens of NbSe2 have been measured as a function of temperature for various crystal orientations. A range of behaviour of the Hall coefficient has been observed varying from a reversal at 27 K for the purest specimen to no temperature dependence for the most impure. The magnetoresistance shows large deviations from Kohler's rule which are correlated with the Hall reversal. The results are discussed in terms of a possible phase change or a two-band model.


1972 ◽  
Vol 50 (22) ◽  
pp. 2836-2839 ◽  
Author(s):  
F. J. Blatt

The thermoelectric power of iron exhibits a broad maximum of about 17 µV/K near 200 K. The relatively high temperature of this maxim and its dependence on alloying and cold work argue against phonon drag as the mechanism responsible for this peak. Recently, MacInnes and Schröder proposed that this peak derives from anisotropic (scew) scattering due to spin–orbit coupling, which may be simulated by a large effective transverse magnetic field. Their calculations, which reproduce experimental observations quite well, are based on an expression derived by Sondheimer that is valid for an ideal two-band model. According to this model and the suggestion of MacInnes and Schröder, the thermoèlectric power of iron should be strongly influenced by domain alignment. Measurements of the dependence of the thermoelectric power of iron in transverse and longitudinal magnetic fields reported here yield results contrary to the predictions of that model.


1963 ◽  
Vol 41 (10) ◽  
pp. 1542-1546 ◽  
Author(s):  
M. P. Sarachik ◽  
G. E. Smith ◽  
J. H. Wernick

The thermoelectric powers of the intermetallic compounds V3Ge, V3Si, V3Ga, and V3Sn have been measured from their superconducting transition temperatures to room temperature. It is found that the thermoelectric coefficients are all positive and about 10 μv/° K at room temperature. The coefficients for V3Si, V3Ga, and V3Sn are monotonically increasing functions of the temperature, whereas for V3Ge there is a pronounced maximum at about 60° K. The results are discussed in terms of a two-band model consisting of a conduction band and a d-band.


1980 ◽  
Vol 58 (7) ◽  
pp. 923-930 ◽  
Author(s):  
H. J. Lee ◽  
J. Basinski ◽  
L. Y. Juravel ◽  
J. C. Woolley

Measurements of electrical conductivity σ and Hall coefficient RH have been made as a function of temperature in the range room temperature to 250 °C and as a function of magnetic field up to 3.2 T on single crystal n-type samples of InP with carrier concentrations in the range 3.5 × 1021 to 1.2 × 1024 m−3. Theoretical calculations of σ and RH have been made using the method of Fletcher and Butcher and the resulting values fitted to the experimental data by using various scattering parameters as adjustable. The parameters so obtained have then been used to predict further magnetoresistance values and values of thermoelectric power and Nernst–Ettingshausen coefficient. The predicted values of magnetoresistance and thermoelectric power show good agreement with experimental values but not those of the Nernst–Ettingshausen coefficient, possibly due to experimental problems.


2011 ◽  
Vol 11 (2) ◽  
pp. 151-158 ◽  
Author(s):  
C. Vialle ◽  
C. Sablayrolles ◽  
M. Lovera ◽  
M.-C. Huau ◽  
M. Montréjaud-Vignoles

The water balance of a four-people family rainwater harvesting system was calculated in a case study. The experimental water saving efficiency (WSE) was calculated as 87%. A simple computer model was implemented to simulate the behaviour of the rainwater harvesting system. In general, the rainwater collector volumes predicted by the daily model had shown a good correlation with the experimental values. The difference between the experimental and the predicted values for the stored volume can be explained by the lack of maintenance of the system that can affect its performance. On the basis of a long-term simulation of 20-year rainfall data, the following parameters were calculated: rainfall, water demand, mains water, rainwater used, over-flow and WSE. The collection of rainwater from roofs, its storage and subsequent use for toilet flushing can save 42 m3 of potable water per year for the studied system. The model was also used to find the optimal size of the tank for the single-family household: a storage capacity of approximately 5 m3 was found to be appropriate. The storage capacity and tank size were distinguished. The importance to take into account the dead volume of the tank for the sizing was indeed highlighted.


Sign in / Sign up

Export Citation Format

Share Document