Quantum Mechanics as a Generalization of Nambu Dynamics to the Weyl-Wigner Formalism

1997 ◽  
Vol 52 (1-2) ◽  
pp. 9-12
Author(s):  
Iwo Bialynicki-Birula ◽  
P.J. Morrison

Abstract It is shown that Nambu dynamics can be generalized to any number of dimensions by replacing the 0(3) algebra, a prominent feature of Nambu's formulation, by an arbitrary Lie algebra. For the infinite dimensional algebra of rotations in phase space one obtains quantum mechanics in the Weyl-Wigner representation from the generalized Nambu dynamics. Also, this formulation can be cast into a canonical Hamiltonian form by a natural choice of canonically conjugate variables.

Author(s):  
Raoelina Andriambololona ◽  
Ravo Tokiniaina Raymond Ranaivoson ◽  
Hasimbola Damo Emile Randriamisy ◽  
Hanitriarivo Rakotoson

This work intends to present a study on relations between a Lie algebra called dispersion operators algebra, linear canonical transformation and a phase space representation of quantum mechanics that we have introduced and studied in previous works. The paper begins with a brief recall of our previous works followed by the description of the dispersion operators algebra which is performed in the framework of the phase space representation. Then, linear canonical transformations are introduced and linked with this algebra. A multidimensional generalization of the obtained results is given.


2004 ◽  
Vol 19 (05) ◽  
pp. 349-355
Author(s):  
JOSÉ M. ISIDRO

We quantise complex, infinite-dimensional projective space CP(ℋ). We apply the result to quantise a complex, finite-dimensional, classical phase space [Formula: see text] whose symplectic volume is infinite, by holomorphically embedding it into CP(ℋ). The embedding is univocally determined by requiring it to be an isometry between the Bergman metric on [Formula: see text] and the Fubini–Study metric on CP(ℋ). Then the Hilbert-space bundle over [Formula: see text] is the pullback, by the embedding, of the Hilbert-space bundle over CP(ℋ).


2020 ◽  
Vol 2020 (9) ◽  
Author(s):  
Joaquim Gomis ◽  
Axel Kleinschmidt ◽  
Diederik Roest ◽  
Patricio Salgado-Rebolledo

Abstract We investigate a systematic approach to include curvature corrections to the isometry algebra of flat space-time order-by-order in the curvature scale. The Poincaré algebra is extended to a free Lie algebra, with generalised boosts and translations that no longer commute. The additional generators satisfy a level-ordering and encode the curvature corrections at that order. This eventually results in an infinite-dimensional algebra that we refer to as Poincaré∞, and we show that it contains among others an (A)dS quotient. We discuss a non-linear realisation of this infinite-dimensional algebra, and construct a particle action based on it. The latter yields a geodesic equation that includes (A)dS curvature corrections at every order.


1998 ◽  
Vol 13 (22) ◽  
pp. 3835-3883 ◽  
Author(s):  
M. REUTER

A hidden gauge theory structure of quantum mechanics which is invisible in its conventional formulation is uncovered. Quantum mechanics is shown to be equivalent to a certain Yang–Mills theory with an infinite-dimensional gauge group and a nondynamical connection. It is defined over an arbitrary symplectic manifold which constitutes the phase space of the system under consideration. The "matter fields" are local generalizations of states and observables; they assume values in a family of local Hilbert spaces (and their tensor products) which are attached to the points of phase space. Under local frame rotations they transform in the spinor representation of the metaplectic group Mp(2N), the double covering of Sp(2N). The rules of canonical quantization are replaced by two independent postulates with a simple group-theoretical and differential-geometrical interpretation. A novel background-quantum split symmetry plays a central role.


Symmetry ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1055
Author(s):  
Stjepan Meljanac ◽  
Anna Pachoł

A Snyder model generated by the noncommutative coordinates and Lorentz generators closes a Lie algebra. The application of the Heisenberg double construction is investigated for the Snyder coordinates and momenta generators. This leads to the phase space of the Snyder model. Further, the extended Snyder algebra is constructed by using the Lorentz algebra, in one dimension higher. The dual pair of extended Snyder algebra and extended Snyder group is then formulated. Two Heisenberg doubles are considered, one with the conjugate tensorial momenta and another with the Lorentz matrices. Explicit formulae for all Heisenberg doubles are given.


Author(s):  
Ommolbanin Behzad ◽  
André Contiero ◽  
Letterio Gatto ◽  
Renato Vidal Martins

AbstractAn explicit description of the ring of the rational polynomials in r indeterminates as a representation of the Lie algebra of the endomorphisms of the k-th exterior power of a countably infinite-dimensional vector space is given. Our description is based on results by Laksov and Throup concerning the symmetric structure of the exterior power of a polynomial ring. Our results are based on approximate versions of the vertex operators occurring in the celebrated bosonic vertex representation, due to Date, Jimbo, Kashiwara and Miwa, of the Lie algebra of all matrices of infinite size, whose entries are all zero but finitely many.


Axioms ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 150
Author(s):  
Andriy Zagorodnyuk ◽  
Anna Hihliuk

In the paper we establish some conditions under which a given sequence of polynomials on a Banach space X supports entire functions of unbounded type, and construct some counter examples. We show that if X is an infinite dimensional Banach space, then the set of entire functions of unbounded type can be represented as a union of infinite dimensional linear subspaces (without the origin). Moreover, we show that for some cases, the set of entire functions of unbounded type generated by a given sequence of polynomials contains an infinite dimensional algebra (without the origin). Some applications for symmetric analytic functions on Banach spaces are obtained.


1995 ◽  
Vol 10 (12) ◽  
pp. 1717-1736 ◽  
Author(s):  
E. ABDALLA ◽  
M.C.B. ABDALLA ◽  
G. SOTKOV ◽  
M. STANISHKOV

We discuss the infinite-dimensional algebras appearing in integrable perturbations of conformally invariant theories, with special emphasis on the structure of the consequent non-Abelian infinite-dimensional algebra generalizing W∞ to the case of a non-Abelian group. We prove that the pure left sector as well as the pure right sector of the thus-obtained algebra coincides with the conformally invariant case. The mixed sector is more involved, although the general structure seems to be near to being unraveled. We also find some subalgebras that correspond to Kac-Moody algebras. The constraints imposed by the algebras are very strong and, in the case of the massive deformation of a non-Abelian fermionic model, the symmetry alone is enough to fix the two- and three-point functions of the theory.


Author(s):  
S. ALBEVERIO ◽  
G. GUATTERI ◽  
S. MAZZUCCHI

The Belavkin equation, describing the continuous measurement of the momentum of a quantum particle, is studied. The existence and uniqueness of its solution is proved via analytic tools. A stochastic characteristics method is applied. A rigorous representation of the solution by means of an infinite dimensional oscillatory integral (Feynman path integral) defined on the phase space is also given.


Sign in / Sign up

Export Citation Format

Share Document