scholarly journals Rayleigh-Bénard convection with magnetic field

2003 ◽  
pp. 29-40 ◽  
Author(s):  
Jürgen Zierep

We discuss the solution of the small perturbation equations for a horizontal fluid layer heated from below with an applied magnetic field either in vertical or in horizontal direction. The magnetic field stabilizes, due to the Lorentz force, more or less Rayleigh-B?nard convective cellular motion. The solution of the eigenvalue problem shows that the critical Rayleigh number increases with increasing Hartmann number while the corresponding wave length decreases. Interesting analogies to solar granulation and black spots phenomena are obvious. The influence of a horizontal field is stronger than that of a vertical field. It is easy to understand this by discussing the influence of the Lorentz force on the Rayleigh-B?nard convection. This result corrects earlier calculations in the literature.

2004 ◽  
Vol 59 (4-5) ◽  
pp. 266-274
Author(s):  
B. S. Bhadauria

The linear thermal instability of a horizontal fluid layer with time-periodic temperature distribution is studied with the help of the Floquet theory. The time-dependent part of the temperature has been expressed in Fourier series. Disturbances are assumed to be infinitesimal. Only even solutions are considered. Numerical results for the critical Rayleigh number are obtained at various Prandtl numbers and for various values of the frequency. It is found that the disturbances are either synchronous with the primary temperature field or have half its frequency. - 2000 Mathematics Subject Classification: 76E06, 76R10.


2003 ◽  
Vol 58 (2-3) ◽  
pp. 176-182
Author(s):  
B. S. Bhadauria

The linear stability of a horizontal fluid layer, confined between two rigid walls, heated from below and cooled from above is considered. The temperature gradient between the walls consists of a steady part and a periodic part that oscillates with time. Only infinitesimal disturbances are considered. Numerical results for the critical Rayleigh number are obtained for various Prandtl numbers and for various values of the frequency. Some comparisons with known results have also been made.


1998 ◽  
Vol 60 (3) ◽  
pp. 529-539 ◽  
Author(s):  
RENU BAJAJ ◽  
S. K. MALIK

A nonlinear thermal instability in a layer of electrically conducting fluid in the presence of a magnetic field is discussed. Steady-state bifurcation results in the formation of patterns: rolls, squares and hexagons. The stability of various patterns is also investigated. It is found that in the absence of a magnetic field only rolls are stable, but when the magnetic field strength exceeds a certain finite value, squares and hexagons also become stable.


2002 ◽  
Vol 453 ◽  
pp. 345-369 ◽  
Author(s):  
ULRICH BURR ◽  
ULRICH MÜLLER

This article presents an analytical and experimental study of magnetohydrodynamic Rayleigh–Bénard convection in a large aspect ratio, 20[ratio ]10[ratio ]1, rectangular box. The test fluid is a eutectic sodium potassium Na22K78 alloy with a small Prandtl number of Pr≈0:02. The experimental setup covers Rayleigh numbers in the range 103< Ra<8×104 and Chandrasekhar numbers 0[les ]Q[les ]1.44×106 or Hartmann numbers 0[les ]M[les ]1200, respectively.When a horizontal magnetic field is imposed on a heated liquid metal layer, the electromagnetic forces give rise to a transition of the three-dimensional convective roll pattern into a quasi-two-dimensional flow pattern in such a way that convective rolls become more and more aligned with the magnetic field. A linear stability analysis based on two-dimensional model equations shows that the critical Rayleigh number for the onset of convection of quasi-two-dimensional flow is shifted to significantly higher values due to Hartmann braking at walls perpendicular to the magnetic field. This finding is experimentally confirmed by measured Nusselt numbers. Moreover, the experiments show that the convective heat transport at supercritical conditions is clearly diminished. Adjacent to the onset of convection there is a significant region of stationary convection with significant convective heat transfer before the flow proceeds to time-dependent convection. However, in spite of the Joule dissipation effect there is a certain range of magnetic field intensities where an enhanced heat transfer is observed. Estimates of the local isotropy properties of the flow by a four-element temperature probe demonstrate that the increase in convective heat transport is accompanied by the formation of strong non-isotropic time-dependent flow in the form of large-scale convective rolls aligned with the magnetic field which exhibit a simpler temporal structure compared to ordinary hydrodynamic flow and which are very effective for the convective heat transport.


2004 ◽  
Vol 2004 (19) ◽  
pp. 991-1001 ◽  
Author(s):  
B. S. Bhadauria ◽  
Lokenath Debnath

The linear stability of a horizontal layer of fluid heated from below and above is considered. In addition to a steady temperature difference between the walls of the fluid layer, a time-dependent periodic perturbation is applied to the wall temperatures. Only infinitesimal disturbances are considered. Numerical results for the critical Rayleigh number are obtained at various Prandtl numbers and for various values of the frequency. Some comparisons have been made with the known results.


2008 ◽  
Vol 50 (2) ◽  
pp. 231-245 ◽  
Author(s):  
JITENDER SINGH ◽  
RENU BAJAJ

AbstractThe stability characteristics of an infinite horizontal fluid layer excited by a time-periodic, sinusoidally varying free-boundary temperature, have been investigated numerically using the Floquet theory. It has been found that the modulation of the temperature gradient across the fluid layer affects the onset of the Rayleigh–Bénard convection. Modulation can give rise to instability in the subcritical conditions and it can also suppress the instability in the supercritical cases. The instability in the fluid layer manifests itself in the form of either a harmonic or subharmonic flow, controlled by thermal modulation.


The linear stability of a rotating, electrically conducting viscous layer, heated from below and cooled from above, and lying in a uniform magnetic field is examined, using the Boussinesq approximation. Several orientations of the magnetic field and rotation axes are considered under a variety of different surface conditions. The analysis is, however, limited to large Taylor numbers, T , and large Hartmann numbers, M . (These are non-dimensional measures of the rotation rate and magnetic field strength, respectively.) Except when field and rotation are both vertical, the most unstable mode at marginal stability has the form of a horizontal roll whose orientation depends in a complex way on the directions and strengths of the field and angular velocity. For example, when the field is horizontal and the rotation is vertical, the roll is directed parallel to the field, provided that the field is sufficiently weak. In this case, the Rayleigh number, R (the non-dimensional measure of the applied temperature contrast) must reach a critical value, R c , which is O ( T 2/5 ) before convection will occur. If, however, the field is sufficiently strong [ T = O ( M 4 )], the roll makes an acute angle with the direction of the field, and R c = O ( T 1/2 ), i.e. the critical Rayleigh number is much smaller than when the magnetic field is absent. Also, in this case the mean applied temperature gradient and the wavelength of the tesselated convection pattern are both independent of viscosity when the layer is marginally stable. Furthermore, the Taylor-Proudman theorem and its extension to the hydromagnetic case are no longer applicable even qualitatively. Over the interior of the layer, however, the Coriolis forces to which the convective motions are subjected are, to leading order, balanced by the Lorentz forces. The results obtained in this paper have a bearing on the possibility of a thermally driven steady hydromagnetic dynamo.


2013 ◽  
Vol 12 (06) ◽  
pp. 1350038 ◽  
Author(s):  
RAMESH CHAND

Rayleigh–Bénard convection in a horizontal layer of nanofluid in the presence of uniform vertical magnetic field is investigated by using Galerkin weighted residuals method. The model used for the nanofluid describes the effects of Brownian motion and thermophoresis. Linear stability theory based upon normal mode analysis is employed to find expressions for Rayleigh number and critical Rayleigh number. The boundaries are considered to be free–free, rigid–rigid and rigid–free. The influence of magnetic field on the stability is investigated and it is found that magnetic field stabilizes the fluid layer. It is also observed that the system is more stable in the case of rigid–rigid boundaries and least stable in case of free–free boundaries. The expression for Rayleigh number for oscillatory convection has also been derived for free–free boundaries.


1984 ◽  
Vol 143 ◽  
pp. 125-152 ◽  
Author(s):  
P. G. Daniels

This paper considers the temporal evolution of two-dimensional Rayleigh–Bénard convection in a shallow fluid layer of aspect ratio 2L ([Gt ] 1) confined laterally by rigid sidewalls. Recent studies by Cross et al. (1980, 1983) have shown that for Rayleigh numbers in the range R = R0 + O(L−1) (where R0 is the critical Rayleigh number for the corresponding infinite layer) there exists a class of finite-amplitude steady-state ‘phase-winding’ solutions which correspond physically to the possibility of an adjustment in the number of rolls in the container as the local value of the Rayleigh number is varied. It has been shown (Daniels 1981) that in the temporal evolution of the system the final lateral positioning of the rolls occurs on the long timescale t = O(L2) when the phase function which determines the number of rolls in the system satisfies a one-dimensional diffusion equation but with novel boundary conditions that represent the effect of the sidewalls. In the present paper this system is solved numerically in order to determine the precise way in which the roll pattern adjusts after a change in the Rayleigh number of the system. There is an interesting balance between, on the one hand, a tendency for the number of rolls to change by the least number possible and, on the other, a tendency for the even or odd nature of the initial configuration to be preserved during the transition. In some cases this second property renders the natural evolution susceptible to arbitrarily small external disturbances, which then dictate the form of the final roll pattern.The complete transition involves an analysis of the motion on three timescales, a conductive scale t = O(1), a convective growth scale t = O(L) and a convective diffusion scale t = O(L2).


2012 ◽  
Vol 691 ◽  
pp. 568-582 ◽  
Author(s):  
E. M. King ◽  
S. Stellmach ◽  
J. M. Aurnou

AbstractTurbulent, rapidly rotating convection has been of interest for decades, yet there exists no generally accepted scaling law for heat transfer behaviour in this system. Here, we develop an exact scaling law for heat transfer by geostrophic convection, $\mathit{Nu}= \mathop{ (\mathit{Ra}/ {\mathit{Ra}}_{c} )}\nolimits ^{3} = 0. 0023\hspace{0.167em} {\mathit{Ra}}^{3} {E}^{4} $, by considering the stability of the thermal boundary layers, where $\mathit{Nu}$, $\mathit{Ra}$ and $E$ are the Nusselt, Rayleigh and Ekman numbers, respectively, and ${\mathit{Ra}}_{c} $ is the critical Rayleigh number for the onset of convection. Furthermore, we use the scaling behaviour of the thermal and Ekman boundary layer thicknesses to quantify the necessary conditions for geostrophic convection: $\mathit{Ra}\lesssim {E}^{\ensuremath{-} 3/ 2} $. Interestingly, the predictions of both heat flux and regime transition do not depend on the total height of the fluid layer. We test these scaling arguments with data from laboratory and numerical experiments. Adequate agreement is found between theory and experiment, although there is a paucity of convection data for low $\mathit{Ra}\hspace{0.167em} {E}^{3/ 2} $.


Sign in / Sign up

Export Citation Format

Share Document