scholarly journals Stability and Metastability of Trapless Bose-Einstein Condensates and Quantum Liquids

2017 ◽  
Vol 72 (7) ◽  
pp. 677-687 ◽  
Author(s):  
Konstantin G. Zloshchastiev

AbstractVarious kinds of Bose-Einstein condensates are considered, which evolve without any geometric constraints or external trap potentials including gravitational. For studies of their collective oscillations and stability, including the metastability and macroscopic tunneling phenomena, both the variational approach and the Vakhitov-Kolokolov (VK) criterion are employed; calculations are done for condensates of an arbitrary spatial dimension. It is determined that that the trapless condensate described by the logarithmic wave equation is essentially stable, regardless of its dimensionality, while the trapless condensates described by wave equations of a polynomial type with respect to the wavefunction, such as the Gross-Pitaevskii (cubic), cubic-quintic, and so on, are at best metastable. This means that trapless “polynomial” condensates are unstable against spontaneous delocalization caused by fluctuations of their width, density and energy, leading to a finite lifetime.

2000 ◽  
Vol 14 (01) ◽  
pp. 1-11 ◽  
Author(s):  
LUCA SALASNICH

We discuss the mean-field approximation for a trapped weakly-interacting Bose–Einstein condensate (BEC) and its connection with the exact many-body problem by deriving the Gross–Pitaevskii action of the condensate. The mechanics of the BEC in a harmonic potential is studied by using a variational approach with time-dependent Gaussian trial wave-functions. In particular, we analyze the static configurations, the stability and the collective oscillations for both ground-state and vortices.


2020 ◽  
Vol 11 (1) ◽  
pp. 93-100
Author(s):  
Vina Apriliani ◽  
Ikhsan Maulidi ◽  
Budi Azhari

One of the phenomenon in marine science that is often encountered is the phenomenon of water waves. Waves that occur below the surface of seawater are called internal waves. One of the mathematical models that can represent solitary internal waves is the modified Korteweg-de Vries (mKdV) equation. Many methods can be used to construct the solution of the mKdV wave equation, one of which is the extended F-expansion method. The purpose of this study is to determine the solution of the mKdV wave equation using the extended F-expansion method. The result of solving the mKdV wave equation is the exact solutions. The exact solutions of the mKdV wave equation are expressed in the Jacobi elliptic functions, trigonometric functions, and hyperbolic functions. From this research, it is expected to be able to add insight and knowledge about the implementation of the innovative methods for solving wave equations. 


Author(s):  
Peter Straka ◽  
Mark Meerschaert ◽  
Robert McGough ◽  
Yuzhen Zhou

AbstractFractional wave equations with attenuation have been proposed by Caputo [5], Szabo [28], Chen and Holm [7], and Kelly et al. [11]. These equations capture the power-law attenuation with frequency observed in many experimental settings when sound waves travel through inhomogeneous media. In particular, these models are useful for medical ultrasound. This paper develops stochastic solutions and weak solutions to the power law wave equation of Kelly et al. [11].


1990 ◽  
Vol 44 (2) ◽  
pp. 361-375 ◽  
Author(s):  
Andrew N. Wright

In a cold plasma the wave equation for solely compressional magnetic field perturbations appears to decouple in any surface orthogonal to the background magnetic field. However, the compressional fields in any two of these surfaces are related to each other by the condition that the perturbation field b be divergence-free. Hence the wave equations in these surfaces are not truly decoupled from one another. If the two solutions happen to be ‘matched’ (i.e. V.b = 0) then the medium may execute a solely compressional oscillation. If the two solutions are unmatched then transverse fields must evolve. We consider two classes of compressional solutions and derive a set of criteria for when the medium will be able to support pure compressional field oscillations. These criteria relate to the geometry of the magnetic field and the plasma density distribution. We present the conditions in such a manner that it is easy to see if a given magnetoplasma is able to executive either of the compressional solutions we investigate.


2021 ◽  
Vol 5 (1) ◽  
pp. 314-336
Author(s):  
Tristram de Piro ◽  

We clarify some arguments concerning Jefimenko’s equations, as a way of constructing solutions to Maxwell’s equations, for charge and current satisfying the continuity equation. We then isolate a condition on non-radiation in all inertial frames, which is intuitively reasonable for the stability of an atomic system, and prove that the condition is equivalent to the charge and current satisfying certain relations, including the wave equations. Finally, we prove that with these relations, the energy in the electromagnetic field is quantised and displays the properties of the Balmer series.


2008 ◽  
Vol 05 (02) ◽  
pp. 477-486 ◽  
Author(s):  
HONGMEI XU ◽  
WEIKE WANG

We study the pointwise estimate of solution to the Cauchy problem for the wave equation with viscosity in odd spatial dimension. Through the explicit analysis of the Green function, we obtain the large time behavior of solution, and the solution exhibit the generalized Huygens principle.


2010 ◽  
Vol 77 (6) ◽  
Author(s):  
Min Kyoo Kang ◽  
Rui Huang

A hydrogel consists of a cross-linked polymer network and solvent molecules. Depending on its chemical and mechanical environment, the polymer network may undergo enormous volume change. The present work develops a general formulation based on a variational approach, which leads to a set of governing equations coupling mechanical and chemical equilibrium conditions along with proper boundary conditions. A specific material model is employed in a finite element implementation, for which the nonlinear constitutive behavior is derived from a free energy function, with explicit formula for the true stress and tangent modulus at the current state of deformation and chemical potential. Such implementation enables numerical simulations of hydrogels swelling under various constraints. Several examples are presented, with both homogeneous and inhomogeneous swelling deformation. In particular, the effect of geometric constraint is emphasized for the inhomogeneous swelling of surface-attached hydrogel lines of rectangular cross sections, which depends on the width-to-height aspect ratio of the line. The present numerical simulations show that, beyond a critical aspect ratio, creaselike surface instability occurs upon swelling.


1996 ◽  
Vol 05 (03) ◽  
pp. 217-225 ◽  
Author(s):  
FREDRIK ANDERSSON ◽  
S. BRIAN EDGAR

By reconciling the wave equation for the Weyl tensor with the corresponding wave equation for the Weyl spinor, we establish a new tensor identity—involving the sum of terms each consisting of a product of the Weyl and Ricci tensors—valid in four (and only four) dimensions. This enables us to give, for the first time, the correct and simplest form of the wave equation for the Weyl tensor in four-dimensional nonvacuum spacetimes. The wave equation for the Weyl tensor in n(> 4) dimensional nonvacuum spaces is also presented for the first time; we show that there does not exist an analogous n-dimensional tensor identity matching the four-dimensional one, and so it follows that there does not exist an analogous simplification of the Weyl wave equation in the n-dimensional case. It is also shown how our new identity, and some other recently discovered identities, relate to a large class of dimensionally dependent identities found some time ago by Lovelock.


Sign in / Sign up

Export Citation Format

Share Document